Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  voltage profile
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Unbalanced network voltage damages utility and end-user equipment. Electrified trains, single-phase distributed generators, and line-toline connected industrial loads can increase voltage imbalances. Using Dynamic Voltage Restorer (DVR) at appropriate places is one way to reduce imbalance in practical networks. This research proposes a new technique for managing DVR to improve voltage profile. The simulation results imply that real-time implementation of the suggested controller is practical and resilient.
PL
Niezrównoważone napięcie sieciowe uszkadza sprzęt komunalny i użytkownika końcowego. Zelektryfikowane pociągi, jednofazowe rozproszone generatory i obciążenia przemysłowe połączone między liniami mogą zwiększać nierównowagę napięcia. Używanie dynamicznego przywracania napięcia (DVR) w odpowiednich miejscach jest jednym ze sposobów zmniejszenia asymetrii w praktycznych sieciach. Badanie to proponuje nową technikę zarządzania DVR w celu poprawy profilu napięcia. Wyniki symulacji sugerują, że implementacja sugerowanego kontrolera w czasie rzeczywistym jest praktyczna i odporna.
EN
This paper discusses optimal allocation planning of synchronous distributed generation (SDG) on mesh grid power system, using breeder genetic algorithm (BGA) method. This optimization technique was built to allocate SDG units for obtaining the smallest power losses, while all buses voltage awakens in standard value. Furthermore, the proposed method was tested on IEEE 30 bus test system, and the optimal solution was reached for three SDG unit installation on 27.73 MW + j1.502 MVAr total power, with 22.46% power losses reduction.
PL
W artykule omówiono optymalne planowanie alokacji synchronicznej generacji rozproszonej (SDG) w systemie elektroenergetycznym sieci kratowej z wykorzystaniem metody algorytmu genetycznego rozpłodnika (BGA). Ta technika optymalizacji została zbudowana w celu alokacji jednostek SDG dla uzyskania najmniejszych strat mocy, podczas gdy napięcie wszystkich magistrali zawiera się w wartości standardowej. Ponadto zaproponowana metoda została przetestowana na systemie testowym magistrali IEEE 30 i osiągnięto optymalne rozwiązanie dla instalacji trzech jednostek SDG o łącznej mocy 27,73 MW + j 1,502 MVAr, przy obniżeniu strat mocy o 22,46%.
EN
This paper proposes a multiobjective improved particle swarm optimisation (IPSO) for placing and sizing the series modular multilevel converter-based unified power flow controller (MMC-UPFC) FACTS devices to manage the transmission congestion and voltage profile in deregulated electricity markets. The proposed multiobjective IPSO algorithm is perfect for accomplishing the close ideal distributed generation (DG) sizes while conveying smooth assembly qualities contrasted with another existing algorithm. It tends to be reasoned that voltage profile and genuine power misfortunes have generous upgrades along ideal speculation on DGs in both the test frameworks. The proposed system eliminates the congestion and the power system can be easily used to solve complex and non-linear optimisation problems in a real-time manner.
EN
High distribution system power-losses are predominantly due to lack of investments in R&D for improving the efficiency of the system and improper planning during installation. Outcomes of this are un-designed extensions of the distributing power lines, the burden on the system components like transformers and overhead (OH) lines/conductors and deficient reactive power supply leading to drop in a system voltage. Distributed generation affects the line power flow and voltage levels on the system equipment. These impacts of distributed generation (DG) may be to improve system efficiency or reduce it depending on the operating environment/conditions of the distribution system and allocation of capacitors. For this purpose, allocating of distributed generation optimally for a given radial distribution system can be useful for the system outlining and improve efficiency. In this paper, a new method is used for optimally allocating the DG units in the radial distribution system to curtail distribution system losses and improve voltage profile. Also, the variation in active power load in the system is considered for effective utilization of DG units. To evidence the effectiveness of the proposed algorithm, computer simulations are carried out in MATLAB software on the IEEE-33 bus system and Vastare practical 116 bus system.
EN
The issue of ORPD (Optimal Reactive Power Dispatch) for enhancing security and economy of a power system has been given substantial consideration in recent days. The major inspiration behind deploying an ORPD system for enhancing power system efficiency is to reallocate the RP (reactive power) in such a manner that power loss be minimized, and voltage profiles get enhanced. Hence, this paper concerns the major objectives, namely, reduction of power loss and voltage deviation that are related to solving ORPD problem under unbalanced condition. To attain these objectives, an amalgamation of two algorithms, called CS (Cuckoo Search) and GWSO (Glow Worm Swarm), is adopted for optimizing, and hence the proposed model is referred to as CP-GWSO. This algorithm functions with the control parameters, namely load reactance, voltage and transformer tap settings that are tuned to attain the optimum outcome. The entire empirical part of the investigations is performed on two IEEE standard test bus systems, the IEEE 14 and the IEEE 39 bus systems. Finally, the proposed scheme is compared to the conventional methods, and its efficiency is confirmed.
EN
Due to the increasing need for electricity, insertion of distributed generation (DG) into a distribution system attracts the attention of the deregulated power market. Placing DG in the distribution system inherently reduces the power loss and improves the system voltage profile. The choice of DG, proper placement and sizing of DG all play a vital role. This paper presents an effective methodology to identify the optimum location of multi type DG in the distribution system. The particle swarm optimization (PSO) algorithm and differential evolution (DE) are applied to identify the proper location and size of DG using the distributed generation suitability index (DGSI). The optimum location of DG is identified through DGSI and optimum sizing is done by means of the power loss minimization technique using evolutionary algorithms. The effective power loss reduction and improved system voltage profile are evaluated using sixteen combinations of different types of DGs with the standard IEEE 33-bus test system. The results reveal that power loss reduction and voltage profile improvement are effectively addressed by the DE algorithm.
EN
With Growing Concerns About Voltage Profile And Power Factor At Distribution Networks, The Capacitor Banks Are Invariably Installed For Reactive Power Compensation. The Reactive Power Supplied By Capacitor Banks Is Proportional To Square Of Their Rated Loading Voltage. Capacitor Banks Eventually Increase The Loading Capacity Of Feeders, So As To Supply More Customers Through Same Line Section. Capacitor Banks Can Be Installed Anywhere On The Network. The Idea Of This Paper Is To Reduce Total Power Loss And Ensure Greater Availability Of Capacitor Bank Installed At 132 Kv Grid Station Qasimabad Hyderabad, For Reactive Power Compensation, Even Under Worst Conditions On Distribution System. This Is Achieved By Enhancing Its Location And Size. At Present Capacitor Bank Of Full Size, I.E. Of 1.21 Mvar Is Installed At 11 Kv Bus Of 132 Kv Grid Station Qasimabad Hyderabad. Moreover This Paper Suggests Small Sized Capacitor Banks That Would Be Installed At Different Feeders Instead Of One Large Size Capacitor Bank At 11 Kv Bus. The Voltage Profile And Power Losses With Present Sized Capacitor Bank And The Proposed Small Sized Capacitor Banks Are Compared In This Work. The Distribution Network Has Been Simulated By Using MATLAB .
EN
Static Var Compensator (SVC) is a popular FACTS device for providing reactive power support in power systems and its placement representing the location and size has significant influence on network loss, while keeping the voltage magnitudes within the acceptable range. This paper presents a Firefly algorithm based optimization strategy for placement of SVC in power systems with a view of minimizing the transmission loss besides keeping the voltage magnitude within the acceptable range. The method uses a self-adaptive scheme for tuning the parameters in the Firefly algorithm. The strategy is tested on three IEEE test systems and their results are presented to demonstrate its effectiveness.
EN
This paper presents the application of the improved harmony search (IHS) algorithm for determining the optimal location and sizing of static Var compensator (SVC) to improve the voltage profile and reduce system power losses. A multi-criterion objective function comprising of both operational objectives and investment costs is considered. The results on the 57-bust test system showed that the IHS algorithm give lower power loss and better voltage improvement compared to the particle swarm optimization method in solving the SVC placement and sizing problem.
PL
Artykuł przedstawia zastosowanie algorytmu IHS (Improved harmony search) do określania optymalnej lokalizacji kompensatora mocy biernej. Rezultaty testów wykazały że algorytm zapenia mniejsze straty mocy oraz zniekształcenia w porównaniu do innych metod optymalizacji.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.