Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  volcanic ash
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The study was conducted on the extraction of volcanic ash from Mount Sinabung through the co-precipitation method to recover silicon dioxide (SiO2). The X-ray fluorescence (XRF) analysis showed that the SiO2 content in volcanic ash was 48.5%, and after extraction, it was 99.1%. The morphology shown by scanning electron microscope (SEM) indicated that SiO2 looks cleaner and tends to be the same size compared to the volcanic ash sample. The average particle size of volcanic ash and extracted SiO2 were 32.28571 ± 2.51259 and 12.97521 ± 0.60657 μm, respectively. The X-ray diffractometer (XRD) analysis showed that the crystal structure of the volcanic ash sample was quartz, maghemite, and cristobalite. Besides, the extracted SiO2 had an amorphous quartz crystal structure. The test conducted using Fourier transform infrared (FTIR) resulted in the absorption of 1095.57 cm-1 and 798.53 cm-1 for the Si‒O‒Si and Si‒OH groups which were the groups of siloxanes and silanols, respectively.
PL
Jednym z głównych naturalnych źródeł rtęci w środowisku jest aktywność wulkaniczna. Emisja rtęci wynikająca z działalności wulkanicznej może stanowić aż do 78% całkowitej ilości rtęci emitowanej ze źródeł naturalnych.
3
Content available remote Operational model for atmospheric transport and deposition of air pollution
EN
An assessment of the current state of natural environment affected by air pollution, as well as, forecasts of pro-ecologic, economic and social activities are very often performed using models for atmospheric transport and deposition of air pollutants. In the present paper, we present an operational dispersion model developed at the Institute of Meteorology and Water Management in Warsaw. The basic assumptions and principles of the model are described together with the operational domain and examples of model applications. Two examples of model application are described and discussed here. The first, application is a simulation of the atmospheric transport and deposition of the radioactive isotopes released into the atmosphere during the Chernobyl Accident in 1998. The second example is related to simulation of atmospheric transport of the tracer released into the air during the ETEX experiment. These two examples and previous applications of the model showed that presented dispersion model is fully operational, not only for long term applications, but especially for emergency situations, like nuclear accidents or volcanic eruptions affecting Polish territory
PL
Do oceny aktualnego stanu środowiska naturalnego w związku z rozprzestrzenianiem się zanieczyszczeń atmosferycznych i do związanego z tym prognozowania proekologicznych działań gospodarczych i społecznych powszechnie stosowane są modele transportu zanieczyszczeń w atmosferze. W niniejszej pracy opisano operacyjny model dyspersji opracowany w Instytucie Meteorologii i Gospodarki Wodnej w Warszawie. Omówiono obszar jego obliczeń, a także przykłady jego zastosowania: symulacja transportu atmosferycznego i depozycji substancji promieniotwórczych uwolnionych podczas awarii w Czarnobylu w 1986 roku. Drugi przykład dotyczył symulacji transportu atmosferycznego substancji pasywnej (tracera) podczas eksperymentu ETEX. Te dwa przykłady i poprzednie zastosowania modelu wykazały, że zaprezentowany model dyspersji jest w pełni funkcjonalny nie tylko do zastosowań długoterminowych, ale przede wszystkim w sytuacjach kryzysowych, takich jak wypadki jądrowe lub erupcje wulkaniczne, które mogą wpływać na stan środowiska na terytorium Polski.
EN
After Eyjafjallajökull volcano eruption on 14 April 2010, due to a complex air mass circulation, Romania was exposed to volcanic ash and its mixture with continental aerosols. Ash particles with an average Ångström (UV-VIS) exponent of 1.4 ± 0.2 and (VIS-IR) of 1.2 ± 0.3, a color ratio (VIS-UV) of 0.54 and (IR-VIS) of 0.49, an average particle depolarization value ~9.4%, and a lidar ratio of 50 sr were retrieved on 18 April from multiwavelength Raman lidar measurements in Bucharest. Mixed volcanic ash with mineral dust particles advected from Sahara, depolarization ~12%, Ångström (UV-VIS) exponent of 1.25 ± 0.25 and (VIS-IR) of 1.45 ± 0.25, an increased color ratio (VIS-UV) of 0.61, (IRVIS) of 0.39 and lidar ratio of 53 sr were identified on 28 April. From observations in Poland conducted by an elastic lidar at 532 nm and a ceilometer at 1064 nm we retrieved an average backscatter related Ångström (VIS-IR) exponent of 1.25 ± 0.35, and a color ratio (IR-VIS) of 0.53 in the layer at about 5.5 km during the night of 16/17 April, indicating fresh ash over Warsaw.
EN
There is continued great interest in determining the trace element and heavy metal content of volcanic ash for a variety of reasons. The motivation stems from the desire to understand the geochemistry of volcanic ash in imbedded geological formations, the impact on seawater, and the possible release of toxic elements into the environment that may impact livestock grazing and water systems. Ash from volcanic plumes can go as high 8-18 km thus affecting climate and air traffic. We have employed Compton suppression neutron activation analysis (NAA) with thermal and epithermal neutrons to determine trace elements in volcanic ash from Indonesian eruption of Mount Merapi in October 2010. We found a wide range of elements, including several rare earth elements.
6
Content available remote Obserwacje pyłu wulkanicznego nad Polską w kwietniu 2010 roku
PL
Celem pracy jest analiza napływu pyłu wulkanicznego nad obszar Polski w połowie kwietnia 2010 r. Wybuch wulkanu Eyjafjoll na Islandii 14 kwietnia spowodował emisję pyłów i gazów do atmosfery, które przesuwały się w kierunku zachodniej i środkowej części Europy. Analiza trajektorii wstecznych pokazała, że pył wulkaniczny pojawił się nad Polską 16 kwietnia. Potwierdziły to obrazy satelitarne wykonane z kompozycji barwnej kanałów w obszarze widzialnym, środkowej oraz dalekiej podczerwieni. Badania własności optycznych pyłów wulkanicznych przeprowadzono w Laboratorium Transferu Radiacyjnego Instytutu Geofizyki UW w Warszawie oraz na Stacji Transferu Radiacyjnego SolarAOT w Strzyżowie na Podkarpaciu. Pomiary prowadzone przy użyciu ceilometru pokazały występowanie aerozolu wulkanicznego w postaci 2-3 warstw do wysokości ok. 5 km nad powierzchnią ziemi. Wyznaczony na podstawie tych pomiarów współczynnik ekstynkcji aerozolu wynosił maksymalnie 0,02-0,03 km-1 (nad ranem 17 kwietnia) dla długości fali 1064 nm. Na ogół jednak przyjmował on znacznie niższe wartości. Obliczona na podstawie profilu ekstynkcji grubość optyczna pyłu wulkanicznego była również niska. Jedynie nad ranem 17 kwietnia osiągała wartości 0,03 w 1064 nm. Niewielkie zawartości pyłu wulkanicznego w pionowej kolumnie atmosfery potwierdzają również pomiary fotometrami słonecznymi w Warszawie i Strzyżowie. W okresie od 17 do 18 kwietnia notowano małe wartość całkowitej grubość optycznej aerozolu, mieszczące się w przedziale 0,11-0,16 (dla 500 nm), podczas gdy średnia klimatyczna wartość grubość optycznej aerozolu w kwietniu wynosi ok. 0,25.
EN
Optical properties of a volcanic aerosol obtained by direct observations from Radiation Transfer Observatory at the Institute of Geophysics University of Warsaw and Aerosol and Radiation Observatory SolarAOT in Strzyżów (south eastern part of Poland) together with Meteosat Second Generation observations are discussed. Aerosol optical properties measured by the Multi-Filter Rotating Shadowband Radiometer (Model MFR-7), Microtops sun photometer, and CHM-15K ceilometer between 14 and 23 April 2010 are investigated . Back-trajectories calculated for 16 and 17 April show advection of air masses from Iceland in the lower and the middle troposphere. Satellite observations performed by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument onboard of the MSG2 confirmed ash over Poland. Unfortunately, cloudy conditions during this day prevented remote observations of the atmosphere's optical properties from the ground. However, surface observations performed on 17 April by the ceilometer indicate volcanic ash layers. At around midnight first ash layer appeared at 5 km. One hour later the second layer between 3 and 4 km was observed. An aerosol layer between 0.5 and 2 km was also measured, however it is difficult to determine the type of remotely sensed particles. After sunset very weak ash clouds were recorded between top of the boundary layer and 4 km. During the day those ash layers were not measured, probably due to a poor signal to noise ratio of the ceilometer's signal. Extinction coefficient for volcanic ash was estimated as 0.02-0.03 km-1 and aero-sol optical thickness was calculated about 0.03 at 1064 nm. Sun photometers' observations at both stations show small total aerosol optical thickness which varies between 0.11 and 0.16 (at 500 nm) during 17 and 18 April 2010. However, the mean aerosol optical thickness for April is about 0.25.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.