Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  vinylester
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the present research presents influence of coupling agent 1 % triethoxymethyl silane sprayed on to the wollastonite particulate powder before it dispersed into the vinylester/composites. Firstly two different composites were developed in which wollastonite is filled with vinylester resin and same wollastonite was sprayed with coupling agent 1 % triethoxymethyl silane then filled with vinylester resin. The particle functionalization with a bi-functional coupling agent 1 % triethoxymethyl silane was observed to have a significant effect on the curing process and subsequent physical properties of the composites. Wollastonite functionalization favors the composite fabrication with a lower curing temperature as compared to the as-received particle filled vinyl ester resin composites. Thermogravimetric analysis showed an increased thermo-stability in the particles functionalized filled vinyl ester resin composites as compared to the unmodified particle filled counterparts. The uniform particle dispersion and the chemical bonding between filler and vinyl ester resin matrix were found to contribute to the increased thermal stability and enhanced tensile strength and modulus.
EN
This paper discloses the development and synthesis of polymer blended nanocomposites filled with nanoclay. The hybridization of epoxy is mixed with vinylester resin (VER) to prepare polymer blend filled with organoclay was studied to enhance mechanical properties of epoxy/VER. Clay loading was done in such a way that with different wt. proportions viz.1, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, & 7.5 w % ratios. Appropriately cured samples gave excellent mechanical and tribological properties. Results showed that the tensile strength of the composites increased with increase in filler content for the range of filler contents (2.5-4 % vol.). The results indicated that at 4 % wt. of filler concentration the tensile strength obtained is good i.e. 47.79 MPa with density 1.37 gm/cm3 and hardness 45.5. Dry Sliding wear tests were also conducted by following a well-planned experimental schedule based on Taguchi’s design of experiments, considering parameters like Filler content, Normal load, Sliding Velocity and Sliding distance, on a Pin-On-Disc set-up (ASTM G-99 standard, Make: DUCOM Engineers, Bangalore, India). In the experimentation composite pins were worn against a rotating steel disc (Europe Norm) EN-31, (Rockwell C Hardness) HRC 60 and (Roughness Average) Ra 0.02 microns. Control factors like Filler Content, Normal Load were found to be significant factors affecting the Wear rate i.e. the inclusion of nanoclay as filler found to be contributed in improving the wear resistance of the composite. SEM observations are made to probe the wear mechanisms involved.
EN
Purpose: The objective of this study is to utilise and evaluate the mechanical properties of the chicken feather quill and fibre reinforced vinylester and polyester composites. Design/methodology/approach: Prior to production of the composites, the chicken feather fibres (CFF) were cleaned, tested and analyzed in terms of physical properties; linear density and tensile behaviour. The unidirectional CFF reinforced composites were produced with vinylester and polyester resins with three fibre reinforcement loadings (2.5, 6, 10wt%). Following experiments were conducted to determine physical properties of the control (0%) and CFF reinforced composites; tensile, flexural and Charpy impact testing. Findings: It was found that the impact properties of the CFF reinforced composites are significantly better than the control composites however both the tensile and the flexural properties of the CFF reinforced composites have poorer values compared to the control composites. For the 10% CFF reinforced vinylester composite, Charpy impact value was 4.42 kgj/mm2 which was 25% higher than the control vinylester composites (3.31 kgj/mm2) and also for the 10% CFF reinforced polyester (4.56 kgj/mm2) composite had three times better impact resistance than the control composite (1.85 kgj/mm2). Practical implications: The CFF reinforced composite have potential applications due to its improved impact behaviour. Originality/value: If the poultry waste can be utilised and used any engineering applications they will be preferred due to low-cost and superior characteristics and the most importantly they will not cause ecological and health problems.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.