Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 45

Liczba wyników na stronie
first rewind previous Strona / 3 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  vertical plate
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 3 next fast forward last
EN
The inverse solution to the heat flux identification during the vertical plate cooling in air has been presented. The developed solution allowed to separate the energy absorbed by the chamber due to radiation from the convection heat losses to air. The uncertainty tests were carried out and the accuracy of the solution has been estimated at a level of 1%-5% depending on the boundary condition model. The inverse solution was obtained for the temperature measurements in the vertical plate. The stainless-steel plate was heated to 950°C and then cooled in the chamber in air only to about 30°C. The identified heat transfer coefficient was compared with the Churchill and Chu model. The solution has allowed to separate the radiation heat losses and to determine the Nusselt number values that stay in good agreement with the Churchill and Chu model for a nearly steady-state air flow for the plate temperature below 100°C.
EN
MHD and radiated heat flow on a rotating system of an electrically conducting fluid in the presence of Hall current under the influence of variable temperature is studied analytically. An exact solution of a non-dimensional form of coupled partial differential equations is obtained by the technique of Laplace transform. The effect of temperature, velocity and concentration is analyzed for various parameters like the Hall parameter [...], thermal radiation [...], rotation parameter [...], Hartmann number [...] and results are discussed in detail with the help of graphs. A mixed analysis of a rotating fluid with Hall current and thermal radiation plays a very essential role in the research area such as plasma physics, MHD generator, fluid drift sensor, cosmological and geophysical level, etc.
EN
The free convective magnetohydrodynamics (MHD) flow of a non-Newtonian fluid due to a semi-infinite vertical plate under the influence of radiation and viscous dissipation is investigated. The system of partial differential equations is derived and solved for the solutions of velocity and temperature profiles along with the Nusselt number and skin friction by using the perturbation technique. The related important dimensionless parameters of Eckert, Grashof, and Prandtl numbers, magnetic field, radiation and heat source are discussed and shown in graphs. Also, the Nusselt number and skin friction at the plate are obtained and presented in the tabular forms. Finally, the corresponding result of Newtonian fluid is obtained by setting viscoelastic parameter k1 = 0. It is worth mentioning that the obtained results coincide with the previously published results.
EN
The free convection heat transfer from an isothermal vertical plate in open space is investigated theoretically. In contrast to conventional approaches we use neither boundary layer nor self-similarity concepts. We base on expansion of the fields of velocity and temperature in a Taylor Series in x coordinate with coefficients being functions of the vertical coordinate (y). In the minimal version of the theory we restrict ourselves by cubic approximation for both functions. The Navier-Stokes and Fourier-Kirchhoff equations that describe the phenomenon give links between coefficient functions of y that after exclusion leads to the ordinary differential equation of forth order (of the Mittag-Leffleur type). Such construction implies four boundary conditions for a solution of this equation while the links between the coefficients need two extra conditions. All the conditions are chosen on the basis of the experience usual for free convection. The choice allows us to express all the theory parameters as functions of the Rayleigh number and the temperature difference. To support the conformity of the theory we derive the Nusselt-Rayleigh numbers relation that has the traditional form. The solution in the form of velocity and temperature profiles is evaluated and illustrated for air by examples of plots of data.
EN
The problem of MHD free convection flow with a parabolic starting motion of an infinite isothermal vertical plate in the presence of thermal radiation and chemical reaction has been examined in detail in this paper. The fluid considered here is a gray, absorbing emitting radiation but a non-scattering medium. The dimensionless governing coupled linear partial differential equations are solved using the Laplace transform technique. A parametric study is performed to illustrate the influence of the radiation parameter, magnetic parameter, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number and time on the velocity, temperature, concentration. The results are discussed graphically and qualitatively. The numerical results reveal that the radiation induces a rise in both the velocity and temperature, and a decrease in the concentration. The model finds applications in solar energy collection systems, geophysics and astrophysics, aerospace and also in the design of high temperature chemical process systems.
EN
Effects of transfer of mass and free convection on the flow field of an incompressible viscous fluid past an exponentially accelerated vertical plate with variable surface temperature and mass diffusion are studied. Results for velocity, concentration, temperature are obtained by solving governing equations using the Laplace transform technique. It is observed that the velocity increases with decreasing values of the chemical reaction parameter or radiation parameter. But the trend is just reversed with respect to the time parameter. The skin friction is also studied.
EN
A novel solution of the free convection boundary problem is represent ed in analytical form for velocity and temperature for an isothermal vertical plate, as an examp le. These fields are built as a Taylor Series in the x coordinate with coefficients as functions of the vertical coordinate ( y ). We restrict ourselves by cubic approximation for both functions. T he basic Navier-Stokes and Fourier-Kirchhoff equations and boundary conditions give links between coefficients and connected with free convection heat transfer phenomen on which define the analytical form of the solution as a function of the Grashof number only. In t he solution the non zero velocity of a fluid flow through a leading edge of the plate is take n into account. The solution in the form of velocity and temperature profiles is numerically evaluated and illustrated for air.
EN
An exact solution of an unsteady flow past a parabolic starting motion of an infinite vertical plate with variable temperature and mass diffusion, in the presence of a homogeneous chemical reaction of first order has been studied. The plate temperature as well as concentration level near the plate are raised linearly with time t. The dimensionless governing equations are solved using the Laplace-transform technique. The effects of velocity profiles are studied for different physical parameters such as the chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number and time. It is observed that the velocity increases with increasing values of the thermal Grashof number or mass Grashof number. The trend is just reversed with respect to the chemical reaction parameter.
EN
A theoretical solution of thermal radiation effects on an unsteady flow past a parabolic starting motion of an infinite isothermal vertical plate with uniform mass diffusion has been studied. The plate temperature as well as the concentration level near the plate are raised uniformly. The dimensionless governing equations are solved using the Laplace-transform technique. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The effects of velocity profiles are studied for different physical parameters such as the thermal radiation parameter, thermal Grashof number, mass Grashof number and Schmidt number. It is observed that the velocity increases with increasing values the thermal Grashof number or mass Grashof number. The trend is just reversed with respect to the thermal radiation parameter.
EN
The effects of thermal radiation on a flow past an impulsively started infinite vertical plate in the presence of a magnetic field have been studied. The fluid considered is a gray, absorbing-emitting radiation but non-scattering medium. The dimensionless governing equations are solved by an efficient, more accurate, unconditionally stable and fast converging implicit scheme. The effects of velocity and temperature for different parameters such as the thermal radiation, magnetic field, Schmidt number, thermal Grashof number and mass Grashof number are studied. It is observed that the velocity decreases in the presence of thermal radiation or a magnetic field.
EN
A finite difference solution of an unsteady flow past an oscillating semi-infinite vertical place with variable temperature and uniform mass flux is presented here. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The dimensionless governing equations are solved by an efficient, more accurate, and unconditionally stable and fast converging implicit scheme. The steady state velocity, temperature and concentration profiles are shown graphically. The effect of velocity and temperature for different physical parameters such as the thermal radiation, Schmidt number, thermal Grashof number and mass Grashof number is studied. It is observed that the velocity decreases in the presence of thermal radiation. It is also observed that the time taken to reach a steady-state is more in the case of vertical plate than horizontal plate.
EN
The thermal diffusion and viscous dissipation effects on an unsteady MHD free convection heat and mass transfer flow of an incompressible, electrically conducting, fluid past an infinite vertical porous plate embedded in a porous medium of time dependent permeability under oscillatory suction velocity in the presence of a heat absorbing sink have been studied. It is considered that the influence of a uniform magnetic field acts normal to the flow and the permeability of the porous medium fluctuates with time. The dimensionless governing equations for this investigation have been solved numerically by using the efficient Galerkin finite element method. The numerical results obtained have been presented through graphs and tables for the thermal Grashof number (Gr > 0) corresponding to the cooling of the porous plate and (Gr < 0) corresponding to heating of the porous plate to observe the effects of various material parameters encountered in the problem under investigation. Numerical data for skin-friction, Nusselt and Sherwood numbers are tabulated and then discussed.
EN
The paper deals with an unsteady two dimensional laminar slip flow of a viscous incompressible magnetomicropolar fluid past a semi infinite porous plate embedded in a porous medium. The flow is under the influence of a transverse magnetic field and heat source/sink. The free stream velocity follows an exponentially increasing or decreasing small perturbation law. The porous surface absorbs the fluid with time varying suction velocity. Expressions are obtained for velocity and temperature fields, mean angular velocity, skin friction and the Nusselt number.
EN
Thermal radiation effects on an unsteady free convective flow of a viscous incompressible flow of a past an exponentially accelerated infinite isothermal vertical plate with uniform mass diffusion in the presence magnetic field are considered. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The plate temperature is raised to Tw and the concentration level near the plate is also raised to Cʹw . An exact solution to the dimensionless governing equations is obtained by the Laplace transform method, when the plate is exponentially accelerated with a velocity u= u0 exp(aʹtʹ) in its own plane against gravitational field. The effects of velocity, temperature and concentration fields are studied for different physical parameters such as the magnetic field parameter, thermal radiation parameter, Schmidt number, thermal Grashof number, mass Grashof number and time. It is observed that the velocity increases with decreasing magnetic field parameter or radiation parameter. But the trend is just reversed with respect to a or t .
EN
An exact analysis of rotation effects on an unsteady flow of an incompressible and electrically conducting fluid past a uniformly accelerated infinite isothermal vertical plate, under the action of a transversely applied magnetic field is presented. The plate temperature is raised linearly with time and the concentration level near the plate is also raised to C’w. The dimensionless governing equations are solved using the Laplace-transform technique. The velocity profiles, temperature and concentration are studied for different physical parameters such as the magnetic field parameter, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number, Prandtl number and time. It is observed that the velocity increases with increasing values of the thermal Grashof number or mass Grashof number. It is also observed that the velocity increases with decreasing values of the magnetic field parameter or rotation parameter Ω.
EN
An exact solution of an unsteady flow past an exponentially accelerated infinite isothermal vertical plate with uniform mass diffusion in the presence of a transverse magnetic field has been studied. The plate temperature is raised to Tw and the species concentration level near the plate is also made to rise Cʹw . The dimensionless governing equations are solved using the Laplace-transform technique. The velocity, temperature and concentration profiles are studied for different physical parameters such as the magnetic field parameter, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number, time and a. It is observed that the velocity decreases with increasing the magnetic field parameter.
EN
Finite difference solutions of the unsteady MHD flow past an impulsively started infinite vertical plate with uniform heat and mass flux are presented here, taking into account the homogeneous chemical reaction of first order. The dimensionless governing equations are solved by an efficient, more accurate, unconditionally stable and fast converging implicit scheme. The effects of velocity, temperature and concentration for different parameters such as chemical reaction parameter, Schmidt number, Prandtl number, thermal Grashof number, mass Grashof number and time are studied. It is observed that due to the presence of a first order chemical reaction, the velocity increases during the generative reaction and decreases in the destructive reaction. It is observed that the velocity decreases in the presence of the magnetic field, as compared to its absence.
EN
An exact solution of first order chemical reaction effects on a radiative flow past a linearly accelerated infinite isothermal vertical plate with variable mass diffusion, under the action of a transversely applied magnetic field has been presented. The plate temperature is raised linearly with time and the concentration level near the plate is also raised to C'w linearly with time. The dimensionless governing equations are tackled using the Laplace-transform technique. The velocity, temperature and concentration fields are studied for different physical parameters such as the magnetic field parameter, radiation parameter, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number, Prandtl number and time. It is observed that velocity increases with decreasing magnetic field parameter or radiation parameter. But the trend is just reversed with respect to the chemical reaction parameter.
EN
Thermal radiation effects on unsteady flow past an oscillating semi-infinite isothermal vertical plate with uniform mass flux have been studied. The fluid considered here is a gray, absorbing-emitting radiation but non-scattering medium. The dimensionless governing equations are solved by an efficient, more accurate, and unconditionally stable and fast converging implicit scheme. The effect of velocity and temperature for different parameters like thermal radiation, Schmidt number, thermal Grashof number and mass Grashof number are studied. It is observed that the velocity decreases in the presence of thermal radiation.
EN
An exact solution of an unsteady flow past an exponentially accelerated infinite vertical plate with variable temperature and mass diffusion is presented in the presence of a magnetic field. The plate temperature and species concentration level near the plate is made to rise linearly with time. The dimensionless governing equations are solved using the Laplace-transform technique. Velocity, temperature and concentration profiles are studied for different physical parameters such as the magnetic field parameter, thermal Grashof number, mass Grashof number, Schmidt number, time and parameter a. It is observed that velocity decreases with increasing the magnetic field parameter. It is also observed that the velocity increases with increasing values of a.
first rewind previous Strona / 3 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.