Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  velocity model
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule zaprezentowano wyniki pracy badawczej, której celem była próba poprawy zobrazowania podłoża Karpat na profilu sejsmicznym 2D z rejonu Karpat Zewnętrznych. Próba ta stanowi kolejny etap w badaniach związanych z opracowaniem sekwencji przetwarzania mającej na celu bardziej szczegółowe odzwierciedlenie sejsmiczne tego trudnego ośrodka geologicznego. W pracy zastosowana została sekwencja przetwarzania opracowana w Zakładzie Sejsmiki Instytutu Nafty i Gazu – Państwowego Instytutu Badawczego w ramach poprzednich prac. Modele prędkości zostały opracowane na bazie pionowych profilowań sejsmicznych (PPS) w otworach wiertniczych. Obecnie w procesie przetwarzania dodatkowo wygenerowano pole prędkości obliczone na podstawie analiz prędkości (prędkości składania). Najbardziej istotnym elementem opracowania była zmiana procedur i parametrów w sekwencji przetwarzania obejmująca zarówno zmiany w sposobie wprowadzania poprawek kinematycznych i resztkowych poprawek statycznych, jak też zmiany w procedurach sumowania i po sumowaniu. Migracja czasowa po składaniu wykonana została w dwóch wariantach, tj. migracji Kirchhoffa oraz migracji różnic skończonych. Dla wszystkich analizowanych pól prędkości użytych do migracji zostały zastosowane ich wartości procentowe (20%, 40%, 60%, 80% i 100%). W wyniku zmian w procedurach sumowania i po sumowaniu uzyskano poprawę obrazu sejsmicznego w porównaniu z wersjami opracowanymi w poprzednich latach. Najlepszy obraz sejsmiczny, charakteryzujący się wyższą rozdzielczością i bardziej wiarygodnymi kątami upadów warstw, widoczny jest w obrębie przedziału czasowego, dla którego wykonane zostały pomiary prędkości średnich w otworach wiertniczych. Natomiast w obrębie przedziału czasowego obejmującego podłoże Karpat, dla którego brak jest pomiarów w otworach wiertniczych, a pole prędkości wygenerowano w wyniku ekstrapolacji z obszarów sąsiednich, takiej poprawy obrazu sejsmicznego z zastosowaniem modelu prędkości interwałowych nie uzyskano. W przypadku tego przedziału nieznaczną poprawę wiarygodności odzwierciedlenia budowy geologicznej w obrazie sejsmicznym osiągnięto jedynie po zastosowaniu pola prędkości obliczonego na podstawie analiz prędkości (prędkości składania).
EN
The article presents the results of a research work aimed at an effort to improve Carpathian basement structures imaging on a selected 2D seismic section from the Outer Carpathians region. This attempt represents the next step in the research related to the development of a processing sequence designed to provide a more detailed seismic imaging of this complicated geological complex. The processing sequence developed at the Seismic Department of the Oil and Gas Institute – National Research Institute was used in this study. Velocity models were created based on vertical seismic measurements (VPS) in wells. In the current work, a velocity field was additionally generated in the processing sequence calculated from velocity analyses (stacking velocities). The most important part of the study was the modification of procedures and parameters in the processing sequence. That processing sequence included both changes in the way kinematic corrections and residual static corrections were introduced as well as modifications in the summation (stack) and post-summation (poststack) procedures. Poststack time migration was performed in two variants, i.e. Kirchoff migration and finite difference migration. Velocity percentages (20%, 40%, 60%, 80%, and 100%) were used for all analyzed velocity fields used for migration. The applied modifications to the stack and poststack procedures resulted in improvements of seismic images compared to versions developed in previous works. The best mapped zone characterized by higher resolution and more reliable dip angles is located mainly within the time interval for which the well average velocity measurements were made. However, within the time interval covering the Carpathian basement, for which there were no well measurements and the velocity field was generated by extrapolation from neighboring areas, no such improvement of seismic image was obtained using the interval velocity model. For that interval there was only a minor improvement in the reliability of the geological structure reflection in the seismic image that was achieved by using the velocity field calculated from velocity analyses (stacking velocities).
PL
W niniejszym artykule zaprezentowano sposób konstrukcji pola prędkości do migracji czasowej po składaniu dla sejsmiki 2D obliczonego na bazie prędkości interwałowych w otworach wiertniczych i interpretacji strukturalnej, a także wyniki migracji czasowej po składaniu z wykorzystaniem tego rozwiązania. Opracowane zostały trzy modele pól prędkości. Modele te różni sposób przestrzennej interpolacji i ekstrapolacji w przyjętym gridzie obliczeniowym w domenie głębokości, który został stworzony na bazie interpretacji strukturalnej profili sejsmicznych 2D. Zastosowano trzy sposoby interpolacji i ekstrapolacji: wg rozkładu Gaussa, kriging oraz moving average. Przestrzennej dystrybucji prędkości interwałowych w otworach wiertniczych dokonano przy zastosowaniu programu Petrel firmy Schlumberger. Z obliczonych przestrzennych modeli prędkości interwałowych na potrzeby migracji czasowej po składaniu zostały wyekstrahowane prędkości interwałowe wzdłuż analizowanego profilu sejsmicznego, które po konwersji z domeny głębokości do domeny czasu zostały użyte do migracji czasowej po składaniu. Dla porównania do tego samego profilu sejsmicznego zastosowano procedurę migracji czasowej po składaniu w oparciu o prędkości składania otrzymane w procesie przetwarzania danych sejsmicznych w wyniku analiz prędkości. Pole obliczone na bazie prędkości interwałowych i interpretacji strukturalnej zostało wykorzystane do czasowej migracji po składaniu obliczonej algorytmem Implicit FD Time Migration (różnic skończonych), natomiast pole prędkości składania zostało użyte do czasowej migracji po składaniu obliczonej algorytmami Stolta i Kirchhoffa zgodnie z uwarunkowaniami technicznymi poprawnego działania tych algorytmów do migracji. Dla wszystkich pól prędkości zostały zastosowane ich wartości procentowe w wybranych zakresach: 60%, 100% i 140%. Wprowadzenie elementu kierunkowej zmienności prędkości, wynikającej z przestrzennej dystrybucji prędkości interwałowych w otworach, do pola prędkości użytego do migracji czasowej po składaniu pozwoliło na uzyskanie lepszego obrazu sejsmicznego w stosunku do obrazu otrzymanego w wyniku zastosowania prędkości składania. Najbardziej wiarygodny obraz sejsmiczny uzyskany w wyniku migracji czasowej po składaniu otrzymano przy zastosowaniu pola prędkości obliczonego na bazie prędkości interwałowych z rozkładem Gaussa, przy użyciu algorytmu różnic skończonych i wartości 60% pola prędkości.
EN
This article presents a construction method of the velocity field for poststack time migration for 2D seismic calculated on the basis of interval velocities in boreholes and structural interpretation, as well as the results of poststack time migration based on this solution. Three velocity field models have been developed. The models used differ in the way of spatial interpolation and extrapolation in the adopted calculation grid in the depth domain, which was created on the basis of a structural interpretation of 2D seismic profiles. Three methods of interpolation and extrapolation were used: Gaussian distribution, kriging and moving average. The spatial distribution of the interval velocities in the boreholes was made using the Petrel software by Schlumberger. The interval velocities along the analyzed seismic profile were extracted from the computed spatial interval velocity models, and after conversion from the depth to the time domain, they were used for the poststack time migration. For comparison, poststack time migration was calculated for the same seismic profile based on the stacking velocities obtained in the seismic processing data as a result of velocity analyzes. The velocity field calculated on the basis of interval velocities and structural interpretation was used for the poststack time migration procedure performed with the Implicit FD Time Migration algorithm (finite difference), while the stacking velocities were used for the poststack time migration procedure performed with the Stolt and Kirchhoff algorithms in accordance with the technical conditions of correct operation of these algorithms. The selected percentage ranges of 60%, 100%, and 140% have been used for all velocity fields. Application of the element of directional velocity variation resulting from the spatial distribution of interval velocities in the boreholes to the velocity field for the poststack time migration allowed to obtain a better seismic image in relation to the one obtained as a result of applying the stacking velocities. The most reliable seismic image after poststack time migration was obtained for the velocity field calculated on the basis of the interval velocities with Gaussian distribution, using the finite difference algorithm with 60 percent value of the velocity field.
PL
W niniejszym artykule zaprezentowano wyniki reprocessingu sejsmiki 2D z rejonu Pomorza Zachodniego. Celem reprocessingu była dalsza poprawa obrazowania utworów i struktur podcechsztyńskich. Uzyskane we wcześniejszym etapie wyniki przetwarzania sejsmicznego, pomimo pewnej poprawy w porównaniu do wersji archiwalnej, nadal nie pozwalają na wiarygodną interpretację strukturalną (a tym bardziej facjalną) w obrębie utworów podcechsztyńskich. Reprocessing wykonano w wersji migracji po składaniu (poststack) na podstawie sekwencji przetwarzania opracowanej w Zakładzie Sejsmiki Instytutu Nafty i Gazu – Państwowego Instytutu Badawczego. Nowymi elementami zastosowanej obecnie sekwencji przetwarzania było szczegółowe podejście do wyliczenia poprawek statycznych na każdym z zarejestrowanych w wyniku akwizycji rekordów sejsmicznych. Ponadto wykonano analizę pola prędkości użytego w procesie sumowania (na kolekcjach CMP), dającego możliwość wyliczenia resztkowych poprawek statycznych w bramkach czasowych, dobieranych na podstawie analizy kątów nachylenia refleksów na sekcji sejsmicznej. Modyfikacji uległo również pole prędkości do czasowej migracji po składaniu. Migrację tą zrealizowano w oparciu o bieżące analizy prędkości oraz pole prędkości opracowane na podstawie pomiarów PPS (pionowe profilowania sejsmiczne), które ze względu na metodykę pomiaru zawierają informację o anizotropii ośrodka geologicznego. Zapis sejsmiczny analizowanego profilu uzyskany na obecnym etapie ujawnia nowe szczegóły obrazu geologicznego w stosunku do wcześniejszego opracowania, zarówno w budowie tektonicznej, strukturalnej, jak i facjalnej. Widoczne jest to głównie w utworach permskomezozoicznych. W utworach podcechsztyńskich poprawa jest również zauważalna, niemniej jednak nadal nie jest to obraz wystarczający do szczegółowej interpretacji. Główną przyczyną braku czytelnego i wiarygodnego obrazu strukturalnego w zapisie sejsmicznym dla utworów podcechsztyńskich jest brak poprawnego rozkładu prędkości w tych utworach, wynikający z niedostatecznej ilości danych. Wyniki tej pracy pokazują możliwości poprawy jakości archiwalnych profili sejsmicznych z badanego rejonu w wyniku reprocessingu. Zdaniem autorów kluczem do uzyskania szczegółowego obrazu sejsmicznego w obrębie utworów podcechsztyńskich jest zastosowanie poprawnego pola prędkości.
EN
This article presents the results of the second part of the work on reprocessing of 2D seismic in the West Pomeranian region. The purpose of reprocessing was to further improve the imaging of under-Zechstein formations and structures. The obtained seismic processing results in the previous stage, although they were better than those obtained on the archival version still do not allow for their reliable structural (as well as facial) interpretation. Reprocessing was performed in post stack migration based on the processing sequence developed at the Seismic Department of the Oil and Gas Institute – National Research Institute. New elements of the currently used processing sequence consisted of a detailed approach to calculate static corrections on each of the registered seismic records and an analysis of the velocity field used in the summation process (on CMP gathers), giving the possibility to calculate residual static corrections in time gates, selected on the basis of dip angle analysis of the reflections in the seismic section. The velocity field for post stack time migration has also been modified. Post stack time migration was based on the current velocity analysis and velocity field obtained on the basis of VPS measurements (vertical seismic profiling), which due to the measurement methodology, contain information about the anisotropy of the geological environment. Seismic image of the analyzed profile obtained at current stage reveals new details of the geological structure compared to the previous study, both in tectonic, structural and facial view. This is mainly visible in Permian-Mesozoic formations. Improvement is also visible in the under-Zechstein deposits, but this seismic image is not still enough for a detailed interpretation. The main reason for the lack of a clear and reliable structural image in the seismic record for under-Zechstein deposits is the lack of correct velocity distribution in these formations, which results from insufficient data. The results of this work show the possibilities of improving the quality of archival seismic sections the studied region as a result of reprocessing. According to the authors, the key to obtaining a detailed seismic image within the sunder-Zechstein formations is the use of the correct velocity model.
PL
W niniejszym artykule zaprezentowano wyniki reprocessingu profili sejsmicznych 2D w rejonie Pomorza Zachodniego. Celem reprocessingu była poprawa obrazowania utworów i struktur podcechsztyńskich. Dotychczasowe wyniki przetwarzania sejsmicznego w zakresie tych utworów nie pozwalają na ich interpretację strukturalną (a tym bardziej facjalną), pomimo podejmowanych w tym celu wysiłków. Reprocessing wykonano w wersji migracji po składaniu (poststack) w oparciu o sekwencję przetwarzania opracowaną w Zakładzie Sejsmiki Instytutu Nafty i Gazu – Państwowego Instytutu Badawczego. Do migracji po składaniu zastosowano pole prędkości składania oraz pole prędkości oparte o pomiary PPS. Zapis sejsmiczny, uzyskany na przetworzonym profilu, cechuje się lepszym odwzorowaniem budowy geologicznej w stosunku do wcześniejszego opracowania. Obraz sejsmiczny uzyskany w wyniku zastosowania pola prędkości do migracji po składaniu, opartego o pomiary PPS, wydaje się być lepszy w stosunku do obrazu sejsmicznego uzyskanego w wyniku zastosowania pola prędkości do migracji po składaniu. Niemniej jednak różnice są niewielkie. Uzyskany obecnie obraz sejsmiczny ukazuje więcej szczegółów budowy strukturalnej zwłaszcza w obrębie utworów permsko-mezozoicznych. W utworach podcechsztyńskich ta różnica nie jest tak wyraźna, ale pozwala na korelację niektórych elementów strukturalnych i tektonicznych, co nie było możliwe na wersji wcześniejszej. Główną przyczyną braku czytelnego i wiarygodnego obrazu strukturalnego w zapisie sejsmicznym dla utworów podcechsztyńskich wydaje się być brak poprawnego rozkładu prędkości w tych utworach, wynikający z niedostatecznej ilości danych. Niemniej jednak wyniki tej pracy pokazują, że nadal istnieje spory potencjał w zakresie reprocessingu archiwalnych profili sejsmicznych z badanego rejonu, a wysiłki poprawy obrazu sejsmicznego w obrębie utworów podcechsztyńskich powinny się koncentrować głównie na poprawnym odwzorowaniu pola prędkości w ich obrębie.
EN
This article presents the results of 2D seismic reprocessing in the West Pomerania region. The purpose of reprocessing was to improve the imaging of under-Zechstein formations and structures. The current results of seismic processing in this area do not allow for their structural (and more facial) interpretation, despite the efforts undertaken to this end. Reprocessing was carried out in the poststack migration version based on a processing sequence developed at the Seismic Department of the Oil and Gas Institute – National Research Institute. Stacking velocities and a velocity model based on VSP measurements were used for poststack migration. The seismic image on the reprocessed profile has a better projection of the geological structure in relation to the previous study. The seismic image obtained as a result of using the velocity model to poststack migration based on VSP measurements appears to be better than the seismic image obtained as a result of using the stacking velocities for poststack migration, but the differences are not significant. The recently obtained seismic image shows more details of tectonics, especially within the Permian-Mesozoic stage. In under-Zechstein formations this difference is not as clear, but allows for the correlation of some structural and tectonic elements which is not possible on the earlier version. The main reason of unreliable structural projection in the seismic image for under-Zechstein formations seems to be the lack of correct velocity distribution in this area, because of insufficient data. Nevertheless, the results of this work shows that there is still appreciable potential for the reprocessing of archival 2D seismic profiles from the studied region. The efforts to improve the seismic image within the under-Zechstein formations should focus on the correct mapping of the velocity field within them.
PL
W niniejszym artykule zaprezentowano sposób konstrukcji pola prędkości na potrzeby migracji czasowej 2D po składaniu w trudnych rejonach geologicznych na przykładzie Karpat fliszowych w południowo-wschodniej Polsce. Rejon badań charakteryzuje się dużym stopniem skomplikowania budowy geologicznej, co przekłada się na znaczną trudność w jego odwzorowaniu na sekcjach sejsmicznych. Określenie poprawnego pola prędkości do procedury migracji pozwala prawidłowo odwzorować wgłębną budowę geologiczną na przekroju sejsmicznym. W wyniku migracji opartej na prawidłowym rozpoznaniu rozkładu prędkości uzyskuje się rzeczywiste położenie punktów odbicia od granic nachylonych, usunięcie dyfrakcji, znaczną poprawę rozdzielczości przestrzennej, a zwłaszcza rozdzielczości poziomej analizowanego obrazu sejsmicznego. Nowatorskim rozwiązaniem konstrukcji budowy pola prędkości na potrzeby migracji czasowej 2D po składaniu było wykorzystanie prędkości średnich z pomiarów PPS (pionowe profilowanie sejsmiczne), które ze względu na metodykę pomiaru zawierają informację o anizotropii ośrodka geologicznego. Istotnym elementem w konstrukcji modelu prędkości było zdefiniowanie optymalnego rozkładu prędkości średnich, zarejestrowanych w lokalnych pozycjach otworów wiertniczych z offsetowych pomiarów PPS. Uwzględnienie efektu anizotropii pozwoliło na wiarygodniejszy rozkład pola prędkości i uzyskanie polepszenia obrazu falowego w stosunku do wcześniejszych opracowań. Otrzymany model prędkości stanowił podstawę do odtworzenia skomplikowanej budowy ośrodka geologicznego. W przyjętej przestrzeni obliczeniowej rejonu badań rozpatrywane były dwa modele: model płasko-równoległy bez interpretacji strukturalnej oraz model z interpretacją strukturalną. Dla przyjętych modeli prędkości średnie uzyskane z PPS zostały interpolowane i ekstrapolowane przy użyciu trzech algorytmów: rozkładu Gaussa, krigingu i moving average w systemie Petrel firmy Schlumberger. Na podstawie przetestowanych modeli prędkości dla wybranego profilu sejsmicznego stwierdzono, że optymalny wynik uzyskano w przypadku rozkładu Gaussa z wykorzystaniem modelu z interpretacją strukturalną. Zastosowanie modelu do migracji czasowej 2D po składaniu uwzględniającego anizotropię ośrodka dostarcza bardziej wiarygodnego obrazu ośrodka geologicznego w stosunku do dotychczasowych opracowań, co powinno przekładać się na zwiększenie efektywności w poszukiwaniach węglowodorów oraz ograniczać stopień ryzyka poszukiwawczego.
EN
The aim of this study was the construction of a velocity field for Post Stack time migration 2D on the example of Flysch Carpathians in south-eastern Poland. The high degree of complexity of the geological structure of this region, makes it difficult for the imaging of seismic sections. Determination of the correct velocities for the migration procedure allows to properly map the deep-seated geological structure on the seismic section. As a result of the migration based on the correct recognition of the velocity distribution, the real location of the reflection points from dip reflectors, the removal of diffraction, a significant improvement in spatial resolution, and especially the horizontal resolution of the seismic sections was obtained. The innovative solution of the construction of the velocity field for the needs of 2D Post Stack time migration was the use of average velocities from VSP data (Vertical Seismic Profiling), which due to the measurement methodology, contain information on the anisotropy of the geological survey. An important element of the construction of the velocity model was the optimal distribution of the average velocity, recorded in the local borehole positions from the offset VSP measurements. Taking into account the effect of anisotropy, it allowed a more reliable distribution of the velocity field and improved seismic image in comparison to previous studies. The obtained velocity model was the basis for reconstructing the complexity of the geological survey. In the computational space of the research area, two models were considered: a flat-parallel model without structural interpretation and a model with structural interpretation. For these models the average velocities obtained from VSP were interpolated and extrapolated using three algorithms: Gaussian, kriging and moving average distribution in the Petrel system of Schlumberger company. From all of the tested velocity models for the selected seismic profile, it was found that the most optimal result was obtained from the Gaussian distribution for the model with structural interpretation. The application of a velocity model, which includes anisotropy, to the 2D Post-Stack time migration, provides a more reliable image of the geological survey in relation to the previous studies, which should translate into increased efficiency in hydrocarbon exploration and limit the level of exploration risks.
PL
Celem opisanych w artykule prac było potwierdzenie możliwości wykorzystania mikrosejsmicznego pomiaru powierzchniowego ze schematem rozłożenia typu patch array dla polskich warunków geologicznych. Opisano przeprowadzone badania mikrosejsmiki powierzchniowej wykonane na odwiercie w północnej Polsce wraz z procedurą optymalizacji modelu prędkościowego.
EN
The aim of the works presented in the article was to confirm applicability of microseismic surface investigation with the „patch array” type distribution scheme in the Polish geological conditions. Described are microseismic surface investigations conducted at a borehole in northern Poland together with the velocity model optimization procedure.
PL
Artykuł przedstawia zarys metodyki wyznaczania pola prędkości dla głębokich badań sejsmiki refleksyjnej 2D. Zaprezentowany został schemat postępowania dla uzyskania finalnego pola prędkości. Wykonano szereg interpretacji geologicznych, weryfikując zmiany pola prędkości w trakcie przetwarzania danych sejsmicznych. Dzięki zastosowanej metodyce opracowania pola prędkości uzyskano obraz budowy geologicznej w funkcji głębokości z migracji głębokościowej PreSDM. Przedstawione obrazowanie wyników interpretacji sejsmicznej w funkcji głębokości dostarczyło nowych informacji geologicznych, które w istotny sposób wpłynęły na weryfikację budowy strukturalnej skorupy ziemskiej w rejonie badań oraz budowy geologiczno-strukturalnej Karpat. Zaprezentowany został szkic końcowej interpretacji profilu POLCRUST w części karpackiej.
EN
The purpose of this paper is to outline a methodology of the velocity model determination for deep seismic line. The procedure for calculating the final velocity model is presented. A series of geological interpretations to verify velocity and structural model changes in the course of seismic processing was done. As a result of the applied methodology of velocity model, determination of a structural geological model was obtained from the depth migration PreSDM. The presented results of the seismic interpretation provided a lot of geological information which significantly influenced the verification of the structural construction of the earth’s crust in the study area as well as the geological-structural construction of the Carpathians. A final interpretation of the POLCRUST profile in the Carpathians parts was presented.
8
Content available remote The methods of vertical time to depth conversion
EN
The final aim of seismic imaging is to position reflectors correctly in the depth domain. Depth imaging implies building up a velocity model of the subsurface. This velocity model must be chosen so that calculated traveltimes provide the closest approximation to real traveltimes. A correct and accurate estimate of depth and dips is required in many instances: structural interpretation of seismic data, well placement and design, rock volume assessment. This means that after time migration interpretive step is necessary for transforming times into depths. A operation that transforms a time-domain seismic data set into its corresponding depth-domain data set is referred to as time to depth conversion. The author is presenting an overview of different methods of converting time to depth using the set of seismic section from Wiszniów - Tarnoszyn survey and 10 number of wells with full set of borehole geophysical data and stratigraphic data. Inter alia: Single well and analytical Z — f(T) function, Several wells and single Z - Zsj- — f(T - Tsj) polynomial, Wells and average velocity maps, Wells and interpolation with seismic times, Wells and interpolation using calibrated stacking velocities, Wells and de-tended stacking velocities, Wells only and interval velocities, Wells and interpolation using calibrated interval seismic velocities, Wells and Vint = f(Zmid), Wells and Vo + kZ, Wells and normalized velocities. Examples of the methods' application were performed. They used building the velocity models on the basis of time to depth transformation. The results are presented on several graphs for comparison of outputs of different models.
EN
The paper presents some results of seismic experiments carried out on the territory of northern Moravia and Silesia, roughly delimited by the coordinates 16°E-19°E and 49°N-51°N. The experiments were aimed at compiling a velocity model of the uppermost Earth's crust using the database of arrival times of Pg and Sg waves recorded at a fairly large number of seismic stations, which enabled us to produce a simple 1D-layered velocity model of the region. The velocity model was computed using the traditional tomographic iterative process composed of consecutive solutions of linear equations. Based on the analysis of velocity distribution, it was found that the velocities of Pg and Sg waves increase from about 5.9 and 3.3 km/s at the surface, to about 6.1 and 3.5 km/s at a depth of 11 km, respectively.
PL
W pracy przedstawiono studium określenia modelu prędkościowo-głębokościowego ośrodka z wykorzystaniem inwersji sejsmicznej.
EN
The publication presents one of the possible way of search for velocities model in the case of real 3D seismic data.
EN
Seismic interpretations are normally made to help identify and locate structural and stratigraphic traps for oil. We focus on problems in interpreting seismic sections in sandy-shaly Miocene deposits which occur in the eastern part of the Polish Carpathian Foredeep. There, the structural picture yielded by the seismic section is not in good agreement with the known structure and a correct interpretation of the seismic wave field, based on seismic modelling, is needed to ensure proper location of exploratory and production wells. We show that the correct choice of petrophysical parameters in these deposits allows interpretation of the seismic image in terms of a multi-horizon gas body. A decrease in velocity, characteristic of gas-saturated beds, was not observed in velocity obtained from sonic measurements. Therefore, several versions of a seismogeological model were constructed based on the results of integrated log interpretation. A model using seismic wave velocity obtained from acoustic wave velocity and a quality factor Q, as a measure of attenuation of elastic waves, was of particular significance. In addition to the petrophysical parameters, the strata geometry necessary to construct a seismogeological model, was determined. Combining the interpreted geometry and information regarding depths of lithostratigraphic units an anticlinal structure was deduced in the gas-rich zone. A comparison of synthetic seismograms calculated using only sonic velocity and seismic velocity corrected for attenuation, with the recorded seismic traces, shows that the best agreement was obtained for a model which included the attenuation. Differences observed between the synthetic and field sections were a basis for determining local direct hydrocarbon indicators, which were then used to identify hydrocarbon deposits in the recorded seismic section.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.