Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  variation of parameters method
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The present study investigates the thermal performance of longitudinal a porous fin with temperature-dependent internal heat generation. The Darcy model is utilized to obtain the differential form of the governing equation that solves the nonlinear temperature distribution equation using the method of variation of parameters. Although this method is applied to solve both linear and nonlinear differential equations, there exist rare applications of this method to solve nonlinear heat transfer problems. In the present study, we applied the method to estimate the thermal analysis of the porous fin exposed to convection. The heat generation is assumed as a function of temperature. The effects of the convection parameter Nc, internal heat generation ɛ, porosity Sh, and generation number G parameter on the dimensionless temperature distribution are discussed in detail. The accuracy of the variation of parameters method is verified through comparison with homotopy perturbation method and the Matlab bvp4c solver (NUM). The results have disclosed that the variation of parameters method can be used as a very effective and practical approach for further studies of the porous medium.
EN
This work devoted to study the injective micropolar flow in a porous channel. The flow is driven by suction or injection on the channel walls, and the micropolar model is used to characterize the working fluid. The governing nonlinear partial differential equations are reduced to the nonlinear ordinary coupled differential equations by using Berman’s similarity transformation. These equations are solved for large mass transfer via variation of parameters method (VPM) which has been used effectively in the solution of nonlinear equations recently. This method has not previously been applied to a problem of micropolar flow. The results of the variation of parameters method are found to be in excellent agreement with the results of the Matlab bvp4c solver (NUM). With this validity, the effects of the some important parameters on the velocity and rotation profile of micropolar flow are discussed in detail. It can be seen that increases in the values N1 and N3 have different results in comparison with N2 increasing.
EN
In this paper, the steady three-dimensional problem of condensation film on an inclined rotating disk is considered. The governing nonlinear partial differential equations are reduced to the nonlinear ordinary differential equations system by a similarity transform. The equation system is solved by the variation of parameters method (VPM) which is rather used to solve nonhomogeneous linear differential equations but can also be used to solve nonlinear differential equations. This method has not previously been used to solve a nonlinear condensation problem. The dimensionless velocity and temperature profiles are shown, and the influence of Prandtl number and rotation ratio on the flow field and the Nusselt number are discussed in detail. In order to assess the accuracy of the solutions obtained by this method, the problem is also solved numerically using the Matlab bvp4c solver. The validity of our solutions is verified by the numerical results.
EN
In this work, a heat transfer study is carried out in a convective-radiative straight fin with temperature-dependent thermal conductivity and a magnetic field using the variation of parameters method. The developed heat transfer model is used to analyze the thermal performance, establish the optimum thermal design parameters and investigate the effects of thermo-geometric parameters and non-linear thermal conductivity parameters on the thermal performance of the fin. The results obtained are compared with the results in literature and good agreements are found. The analysis can serve as basis for comparison of any other method of analysis of the problem and it also provides a platform for improvement in the design of fin in heat transfer equipment.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.