Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  variable temperature
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
MHD and radiated heat flow on a rotating system of an electrically conducting fluid in the presence of Hall current under the influence of variable temperature is studied analytically. An exact solution of a non-dimensional form of coupled partial differential equations is obtained by the technique of Laplace transform. The effect of temperature, velocity and concentration is analyzed for various parameters like the Hall parameter [...], thermal radiation [...], rotation parameter [...], Hartmann number [...] and results are discussed in detail with the help of graphs. A mixed analysis of a rotating fluid with Hall current and thermal radiation plays a very essential role in the research area such as plasma physics, MHD generator, fluid drift sensor, cosmological and geophysical level, etc.
EN
An analysis has been carried out to study the combined effects of radiation absorption and chemical reaction on an incompressible, electrically conducting and radiating flow of a Rivlin-Ericksen fluid along a semi-infinite vertical permeable moving plate in the presence of a transverse applied magnetic field. It is assumed that the suction velocity, the temperature and the concentration at the wall are exponentially varying with time. The dimensionless governing equations for this investigation are solved analytically using two-term harmonic and non-harmonic functions. A comparison is made with the available results in the literature for a special case and our results are in very good agreement with the known results. A parametric study of the physical parameters is made and results are presented through graphs and tables. The results indicate that the fluid velocity and temperature could be controlled by varying the radiation absorption.
EN
A finite difference solution of an unsteady flow past an oscillating semi-infinite vertical place with variable temperature and uniform mass flux is presented here. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The dimensionless governing equations are solved by an efficient, more accurate, and unconditionally stable and fast converging implicit scheme. The steady state velocity, temperature and concentration profiles are shown graphically. The effect of velocity and temperature for different physical parameters such as the thermal radiation, Schmidt number, thermal Grashof number and mass Grashof number is studied. It is observed that the velocity decreases in the presence of thermal radiation. It is also observed that the time taken to reach a steady-state is more in the case of vertical plate than horizontal plate.
EN
Thermal radiation effects on an unsteady flow of a viscous incompressible and electrically conducting fluid past an impulsively started infinite vertical plate in the presence of i) variable temperature, ii) uniform mass diffusion and iii) a uniform magnetic field applied transversely to the flow, are studied. The dimensionless governing equations are solved by using the Laplace transform technique. The velocity, concentration as well as temperature distributions and skin-friction are studied for different values of the parameters involved. Results obtained are presented with the help of graphs and tables.
EN
Thermal radiation effects on an MHD flow past an infinite vertical oscillating plate in the presence of variable temperature is considered. The temperature near the plate is made to rise linearly with time. The fluid considered is a gray, absorbing-emitting radiation but a non-scattering medium. The dimensionless governing equations are solved using the Laplace-transform technique. The velocity and temperature are studied for different parameters like magnetic field parameter, radiation parameter, phase angle and time. The variation of the skin-friction for different values of the parameters is also shown in a table.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.