Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  usuwanie substancji organicznych
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Adsorption processes involving ordered mesoporous carbons (OMCs) can be applied to removal of various organic substances from water solutions. These materials possess unique adsorption properties resulting from their large specific surface area and high pore volume. Furthermore, they exhibit uniform and accessible pores of desired sizes as well as demonstrate high thermal stability and chemical inertness. Their well-developed and active surface can be easily modified, allowing synthesis of adsorbents with desired properties. Ordered mesoporous carbon materials with functional groups may serve as advanced materials for water treatment. These materials, following adsorption of harmful substances, may regenerate via extraction, e.g. with ethanol or toluene or via thermal treatment. Their initial adsorption capacity of a starting material remains mostly unchanged. Ordered mesoporous carbons containing nickel or iron nanoparticles are very interesting adsorption materials due to their magnetic properties that allow easy separation from the solution being purified. Ordered mesoporous carbon materials may become adsorbents of the next generation. They are likely to replace classic active carbons used for adsorption-based water treatment procedures.
PL
Procesy adsorpcyjne z wykorzystaniem uporządkowanych węgli mezoporowatych (OMC) mogą być stosowane do usuwania różnorodnych substancji organicznych z roztworów wodnych. Materiały te mają unikalne właściwości adsorpcyjne, wynikające z ich dużej powierzchni właściwej i dużej objętości porów, a ponadto zawierają jednorodne i dostępne pory o określonym wymiarze. Charakteryzują się także wysoką stabilnością termiczną i odpornością chemiczną. Ich bardzo dobrze rozwinięta i aktywna powierzchnia może być stosunkowo łatwo modyfikowana, co prowadzi do otrzymywania adsorbentów o pożądanych właściwościach. Uporządkowane mezoporowate materiały węglowe z funkcjonalnymi grupami mogą pełnić rolę zaawansowanych materiałów do oczyszczania wody. Materiały te, po adsorpcji szkodliwych substancji, mogą być regenerowane za pomocą ekstrakcji, np. etanolem, toluenem lub przez termiczne wygrzewanie. Zachowują przy tym w dużym stopniu pojemność adsorpcyjną materiału wyjściowego. Uporządkowane węgle mezoporowate z nanocząstkami niklu lub żelaza są bardzo interesującymi materiałami adsorpcyjnymi z uwagi na ich właściwości magnetyczne, dzięki którym możliwa jest ich łatwa separacja z oczyszczanego roztworu. Uporządkowane mezoporowate materiały węglowe mogą stać się adsorbentami następnej generacji. Być może zastąpią one klasyczne węgle aktywne stosowane do adsorpcyjnego oczyszczania wody.
EN
Swelling of ion exchange resins depends on solvation of functional groups and tendency to reach equilibrium between internal and external ionic solutions. These phenomena lead to changes in volume of an ionite portion. Sedimentation time of a fresh MIEX® powdered resin in demineralized water was experimentally estimated at approximately 5 min. Therefore, any shorter time should definitely not be used for the ionite dose measurements. It has been proven that solution type used to prepare the resin suspension affects the ionite volume as a result of variations in its swelling. 3.5% increase in resin volume was determined after switching from demineralized water to model solution containing composition of dissolved organic and inorganic constituents. Therefore, in order to obtain a fixed reference value only resin suspension in demineralized water should be applied when calculating a dose (especially, when comparing different study results). Progressing resin saturation resulted in change in the volume of a certain ionite portion. Swelling increase was being observed until ionite load corresponding to the bed volume of 400 cm3/cm3 was reached, and then it stabilized. At that point an increase in the ionite volume was 15% when compared to the value for the fresh resin in demineralized water and about 11% when compared to the initial resin volume in the model solution containing natural organic substances. The maximum swelling was reported at the relatively small ionite load, therefore the degree of swelling of a resin working in a typically loaded reactor is expected to be constant. The impact of swelling on the measured doses of fresh resin and on the corresponding amounts of saturated resin should be considered not only in experiments but also while exploiting powdered resins in the ion exchange process.
PL
Pęcznienie żywic jonowymiennych uwarunkowane jest solwatacją grup funkcyjnych oraz dążeniem do równowagi wewnętrznego i zewnętrznego roztworu jonowego, co prowadzi do zmian objętości zajmowanej przez określoną porcję jonitu. Czas sedymentacji świeżej żywicy proszkowej MIEX® w wodzie zdemineralizowanej oceniono w badaniach na około 5 min, dlatego w krótszym czasie bezwzględnie nie powinno się dokonywać pomiarów dawki jonitu. Wykazano, że rodzaj roztworu użytego do przygotowania suspensji żywicy wpływa na objętość jonitu na skutek jego zróżnicowanego pęcznienia. Stwierdzono 3,5% wzrost objętości porcji żywicy po zamianie wody zdemineralizowanej na roztwór modelowy zawierający kompozycję organicznych i nieorganicznych składników rozpuszczonych. Z tego względu jedyną możliwością uzyskania stałego odniesienia przy pomiarze dawki (zwłaszcza w aspekcie porównywania wyników różnych badań) jest posługiwanie się suspensją żywicy w wodzie zdemineralizowanej. Postępujące wysycanie żywicy wpływało na zmianę objętości zajmowanej przez określoną porcję jonitu. Rosnące pęcznienie żywicy obserwowano aż do obciążenia jonitu odpowiadającego krotności wymiany 400 cm3/cm3, po czym ulegało ono stabilizacji. Wówczas wzrost objętości porcji jonitu wyniósł 15% w stosunku do pomiaru zawartości świeżej żywicy w wodzie zdemineralizowanej oraz około 11% w stosunku do pomiaru dokonanego w roztworze modelowym zawierającym naturalne substancje organiczne. Maksymalne pęcznienie stwierdzono przy stosunkowo małym obciążeniu jonitu, dlatego należy oczekiwać, że stopień spęcznienia żywicy pracującej w typowo obciążonym reaktorze będzie stały. Wpływ procesu pęcznienia na odmierzane dawki żywicy świeżej oraz odpowiadające im zawartości żywicy wysyconej powinny być brane pod uwagę zarówno w badaniach, jak i podczas eksploatacji procesu wymiany jonowej z użyciem żywic proszkowych.
PL
Intensywność barwy wód naturalnych zależy od zawartych w nich rozpuszczonych substancji organicznych. Znacząca część tych substancji występuje w postaci rozpuszczonych, anionowych reszt kwasów humusowych, powstałych z dysocjacji grup karboksylowych i fenolowych, co umożliwia ich usuwanie na żywicach anionowymiennych. W wypadku wody powierzchniowej o barwie 74 gPt/m3, potencjalną skuteczność metody oczyszczania wody na żywicy anionowymiennej MIEX® oszacowano na poziomie 98%. W praktyce należy dążyć do dotrzymania dopuszczalnej wartości barwy wody (<15 gPt/m3), niż maksymalizacji efektów pracy żywicy anionowymiennej. Stwierdzony w badaniach obszar zalecanych krotności wymiany żywicy (BV) wynosi 1000÷2000. W pracy wykazano, że metoda wymiany jonowej jest selektywna w stosunku do usuwania z wody barwnych frakcji rozpuszczonego węgla organicznego. Znajduje to wyraz w zmianie wartości stosunku intensywności barwy wody do RWO od 4,8 gPt/gC, w wypadku wody surowej, do 0,5 gPt/gC w wodzie oczyszczonej tą techniką. Stwierdzono, że rozwiązanie to powinno być zalecane w szczególności wszędzie tam, gdzie wysoka intensywność barwy jest jednym z głównych problemów oczyszczania wody.
EN
The color of natural water depends on the content of dissolved organic substances. A major part of these substances occurs in the form of dissolved anionic humic acid radicals from the dissociation of carboxyl and fenol groups, and this enables their removal on an anion-exchange resin. As for surface water of a 74 gPt/m3 color, the potential efficiency of the water treatment method involving MIEX® anion-exchange resin was estimated at the level of 98%. It is essential to aim at maintaining the admissible color value (<15 gPt/m3) rather than maximizing the performance of the anion-exchange resin. The range of recommended bed volume for resin exchange falls between 1000 and 2000. The ion-exchange method was found to be selective with respect to colored dissolved organic carbon (DOC) fractions. This manifested in the change of the color/DOC ratio from 4.8 gPt/gC to 0.5 gPt/gC for raw water and treated water, respectively. The method described has much to be recommended, especially where color is a major problem faced during water treatment.
PL
Żywica anionowymienna MIEX® jest materiałem służącym między innymi do usuwania związków organicznych z roztworów wodnych. Kinetyka reakcji wymiany anionowych form RWO na jony chlorkowe z żywicy, opisana parametrami dawki żywicy i czasu kontaktu, jest podstawą działania procesu MIEX DOC. W pracy wykazano ścisły związek pomiędzy skutecznością usuwania zanieczyszczeń organicznych z wody a parametrami kinetyki procesu, w postaci zależności skuteczności procesu od iloczynu dawki żywicy i czasu jej kontaktu z oczyszczaną wodą. Zaobserwowana prawidłowość pozwala na zdefiniowanie obszaru stosowalności procesu MIEX DOC, co ma istotne znaczenie praktyczne, zarówno w aspekcie projektowania jak i eksploatacji tego procesu. W odniesieniu do badanej wody racjonalne stosowanie metody anionowymiennej wymaga użycia takich wartości dawki żywicy i czasu kontaktu, aby ich iloczyn mieścił się w przedziale 75 ÷ 200 min cm3/dm3.
EN
Besides other uses, the anion-exchange resin MIEX® is also designed to remove organic compounds from aqueous solutions. The kinetics governing the exchange of the DOC anions for the chloride ions of the MIEX® resin (described by the resin parameters and contact time) is the basic mechanism involved in the MIEX®DOC process. Our study has shown a close relationship between the efficiency of organic matter removal and the parameters of the process kinetics. In the formula that describes this finding, the efficiency of the process is related to the product of resin dose and its time of contact with the water to be treated. By virtue of such relationship, it is possible to define the range of applicability for the MIEX®DOC process. As for the water used in this study, the application of the anion exchange method was found to be rational when the product of the resin dose value and contact time value ranged between 75 and 200 min x cm3/dm3.
PL
Domieszki organiczne wód naturalnych uznawane są za zanieczyszczenie z powodu ich podatności na reakcje z utleniaczami, w których powstają niebezpieczne dla zdrowia halogenowe związki organiczne. Obok tradycyjnych metod usuwania substancji organicznych z wody, takich jak adsorpcja i koagulacja, pojawiają się nowe, do których zaliczyć należy wymianę jonową. Przydatność żywic anionowych wynika z częstego występowania w cząsteczkach organicznych ujemnie zdysocjowanych grup karboksylowych lub fenolowych. Celem wykonanych badań była ocena roli wymiany jonowej w usuwaniu organicznych domieszek wody w ciągu technologicznym, opartym na tradycyjnych technikach koagulacji i adsorpcji oraz na stosowaniu nowej metody MIEX®DOC. Badania prowadzono w trzech sekwencjach procesów: koagulacja-adsorpcja (1), wymiana jonowa-adsorpcja (2), wymiana jonowa-koagulacja-adsorpcja (3). Wyniki badań wskazują, że adsorpcja i wymiana anionowa (proces MIEX®DOC) odgrywają podobnie ważną rolę w usuwaniu rozpuszczonego węgla organicznego (RWO), zaś koagulacja jest procesem uzupełniającym. Proces MIEX®DOC ma tę przewagę nad adsorpcją, że daje trwały w czasie efekt usuwania RWO, czego nie zapewnia adsorpcja kolumnowa. Połączenie obu metod tworzy nową jakość w usuwaniu organicznych domieszek wody. Przy odpowiednio dobranym rozkładzie ładunków RWO usuwanych w każdym z procesów możliwe jest utrzymanie wartości wskaźników RWO oraz SUVA254 znacznie poniżej zalecanego poziomu, nawet w fazie plateau cyklu pracy kolumny adsorpcyjnej. Robocza zdolność usuwania RWO sięga wówczas 50%.
EN
Organic components of natural water are regarded as pollutants because of reactions with chlorine or other oxidants, which produce harmful to health products. Besides conventional treatment methods like granular activated carbon (GAC) adsorption and coagulation, new processes like ion exchange are examined. Usefulness of anion exchange resins results from presence of negatively charged carboxyl and phenolic groups in most of organic molecules. Research on the efficiency of cooperation of coagulation, anion exchange and adsorption processes for organics removal were performed on raw water intake of "Mokry Dwor" water treatment plant. "Mokry Dwor" takes water from the River Olawa and produces about 40% of the distributed drinking water for the city of Wroclaw, Poland. Investigations were performed between March and April 2005. Three sequences of treatment processes were examined: coagulation-adsorption, anion exchange-adsorption and anion exchange-coagulation-adsorption. Anion exchange resin MIEX®, alum coagulant PAX XL3 and granular activated carbon WG-12 were used in the experiments. The potential abilities of organic contaminants removal were estimated on 17% for coagulation, 82% for anion exchange and 90% for GAC adsorption. GAC adsorption followed by alum coagulation gave 91.5% removal of raw water dissolved organic carbon (DOC). However the operating abilities of anion exchange and adsorption processes were lower indeed and rather did not exceed respectively 40 and 30% of DOC removal. Results of research show that adsorption and anion exchange (MIEX®DOC process) can play a similarly important role in DOC removal, and coagulation may be rather a supplementary process. MIEX®DOC method gives constant and time-independent efficiency of DOC removal, that cannot be ensured in GAC adsorption column system. The sequence of anion exchange and adsorption processes creates a new quality of organics removal. DOC removal based on both MIEX®DOC and GAC adsorption processes enables getting both DOC and SUVA (specific ultraviolet absorbance) indicators below recommended values, even during the plateau phase of adsorption. The effective removal of DOC achieves then about 50%.
PL
Usunięcie związków organicznych z wody przeznaczonej do spożycia do jak najniższego poziomu staje się coraz pilniejszym zadaniem technologicznym, głównie z uwagi na tworzenie ubocznych produktów dezynfekcji. Obok klasycznych procesów jednostkowych, duże nadzieje stwarza nowa technologia MIEX®DOC, oparta na procesie wymiany jonowej na namagnetyzowanych żywicach anionowymiennych. Ocena przydatności tej metody wymaga w pierwszej kolejności wykonania badań technologicznych w postaci testów naczyniowych, a następnie badań pilotowych procesu. W pracy zaprezentowano wyniki badań pilotowych przeprowadzonych w marcu 2005 r. w oparciu o wodę powierzchniową z rzeki Oławy, ujmowaną na potrzeby zakładu oczyszczania wody "Mokry Dwór" we Wrocławiu. Zwrócono szczególną uwagę na zasadnicze reguły prowadzenia takich badań oraz na podstawowe parametry procesowe, jak czas kontaktu, zawartość żywicy w układzie oraz krotność wymiany objętości żywicy. Umiejętne operowanie wartościami tych parametrów pozwoliło na kształtowanie poziomu zanieczyszczenia organicznego wody oczyszczonej. Badania potwierdziły uzyskane wcześniej w testach naczyniowych dane o efektach usuwania domieszek organicznych z wody w procesie MIEX®DOC, lokując je na poziomie 50-60% usunięcia dla takich wskaźników jak barwy i absorbancja w UV oraz 40% dla rozpuszczonego węgla organicznego. Badania nie potwierdziły natomiast wniosków dotyczących nieskuteczności koagulacji w usuwaniu substancji organicznych z wody poddanej procesowi MIEX®DOC. Koagulacja, jako proces samodzielny, była zdecydowanie mniej skuteczna w usuwaniu zanieczyszczeń organicznych, niemniej w połączeniu z wymianą jonową umożliwia zwiększenie stopnia usunięcia rozpuszczonego węgla organicznego z 40% nawet do około 60%. Wykazano, że nie wyczerpuje to puli związków organicznych podatnych na usuwanie w innych procesach, jak np. sorpcji na węglu aktywnym.
EN
From the technological viewpoint, the removal of organic compounds to the lowest possible level from water treated for drinking purposes has taken on a sense of urgency, mainly due to the formation of disinfection by-products. Apart from the conventional unit processes, the new MIEX®DOC technology, which is based on the process of ion exchange on magnetized anion-exchange resins, seems to be very promising. To assess the applicability of this method to the purpose of interest, it is necessary to perform technological investigations using jar tests, followed by pilot investigations of the process. This paper includes the results of a pilot study carried out in March 2005 with samples of surface water (from the river Oława) taken in by the Waterworks Mokry Dwór of Wrocław. Particular consideration was given to the specific rules governing this type of study, as well as to the basic process parameters of the process (contact time, resin content in the system, bed volumes). Owing to a reasonable adoption of the parameter values, it is possible to control the levels of organic pollutants in the treated water. The pilot study has substantiated the jar-test data on the efficiency of organic matter removal from water by the MIEX®DOC process, setting it at the level of 50 to 60% for such pollutants as color and UV absorbance, and at the level of 40% for dissolved organic carbon (DOC). The study has not confirmed the conclusion that coagulation fails to be efficient in removing organic substances from water treated by the MIEX®DOC mode. Coagulation alone was found to be remarkably less efficient in removing organic pollutants. However, combined with ion exchange, the coagulation process accounted for a rise in the extent of DOC removal from 40% to about 60%. It was shown that this did not mean a decline in the amount of organic compounds easy to remove via other processes, e.g. sorption on activated carbon.
PL
W artykule omówiono przydatność procesu koagulacji siarczanem glinu i żelaza(III), glinianem sodu oraz chlorkiem poliglinu, w usuwaniu zanieczyszczeń organicznych z wody podziemnej. Wykazano, że o stopniu usuwania substancji organicznych współdecydowały wartość stosunku utlenialności do żelaza ogólnego, pH i temperatura oczyszczanej wody oraz rodzaj i dawka koagulantu. Efekty usuwania zanieczyszczeń organicznych zwiększały się wraz ze wzrostem stężenia jonów H+ i temperatury wody, natomiast zmniejszały się wraz z rosnącą ilością połączeń żelazoorganicznych w wodzie surowej. Bez względu na wartości wskaźników oczyszczanej wody, najskuteczniejszym koagulantem był chlorek poliglinu. Poprzedzenie procesu koagulacji napowietrzaniem wody, równoznaczne ze wzrostem pH, pogorszyło stopień obniżenia utlenialności i zawartości OWO. Podobny wpływ spowodowało wspomaganie procesu koagulacji siarczanem glinu i żelaza(III) przy pomocy flokulantu organicznego Praestol 2540.
EN
Alum, Fe(III), sodium aluminate and polyaluminum chloride coagulation processes were tested for the removal of organics from groundwater. The extent of organic matter removal was found to depend on the value of the COD/Fe ratio, on the pH and temperature of the water to be treated, as well as on the type and dose of the coagulant used. Removal efficiency increased with the rise in H+ ion concentration and temperature, and decreased as the amount of ferro-organic complexes in raw water increased. Irrespective of the pollutants present in the water, the polyaluminum chloride coagulant was the most efficient. The inclusion of aeration as a prior step, which brings about a rise in pH, lowered the extent of COD and TOC reduction. A similar effect was observed when alum or Fe(III) coagulation was aided with the organic flocculant Praestol 2540.
EN
Pilot-scale investigations into nitrogen and phosphorus removal by the activated sludge process were carried out in the wastewater plant of Poznań. Under laboratory conditions, the following parameters were examined: Ammonia Utilization Rate (AUR), Nitrate Utilization Rate (NUR), Phosphorus Release Rate (PRR) and Phosphorus Uptake Rate (PUR) for the activated sludge coming from a pilot plant. With the results obtained it was possible to calibrate and verify the mathematical model describing the ASM 2d activated sludge for the pilot plant of interest. It was found that the predictions of phosphorus variations established in terms of the original ASM 2d model were inadequate when the untreated wastewater contained very high amounts of Volatile Fathy Acids (VFA). Despite the presence of VFA in the anoxic or oxic phase, phosphorus release terminated, followed by the initiation of phosphorus uptake, thus resulting in a rapid decrease of phosphates concentration in the solution. Under such conditions the ASM 2d model predicts further release of phosphates up to a complete VFA exhaustion. The proposed modification of the model includes the incorporation of two terms, Ko/(Ko+So) and Kno/(Kno+Sno), into the equation for the PHA storage rate, which results in the blocking of the process under oxic and anoxic conditions, respectively. With such modification it is possible to make the predictions of the model far more adequate to reality. In the study, consideration was also given to the problem of model calibration with respect to the denitrification effect.
EN
The adsorption properties of mineral adsorbents modified with sulfuric acid and potassium hydroxide were studied and compared to those of active carbons by using benzene and chloroform vapors. Experimental adsorption isotherms of ben-zene and chloroform at 25°C were measured using the volumetric method of liquid microburetes. It is shown that due to the lack of fine pores (micropores) the adsorption on mineral adsorbents in the range of low relative pressures is from one-half to one-third that on active carbons. However, both types of adsorbents show similar adsorption at relative pressures close to unity. Mineral adsorbents which are lacking in micropores possess mainly mesopores, i.e., pores of sizes between 2 nm and 50 nm. Therefore, these adsorbents show quite good adsorption properties in the range of moderate and high relative pressures. The total volume of micro- and mesopores in active carbons is close to the volume of mesopores in mineral adsorbents. It is shown that an effective method for modifying the mesoporous structure of mineral adsorbents is their chemical treatment with sulfuric acid. However, the basic treatment of the aforementioned mineral adsorbents does not lead to significant improvements of their porous structure. It seems that mineral adsorbents may be useful for the removal of organic compounds from the gas phase.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.