Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  user equipment allocation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper, the authors present an algorithm for determining the location of wireless network small cells in a dense urban environment. This algorithm uses machine learning, such as k-means clustering and spectral clustering, as well as a very accurate propagation channel created using the ray tracing method. The authors compared two approaches to the small cell location selection process – one based on the assumption that end terminals may be arbitrarily assigned to stations, and the other assuming that the assignment is based on the received signal power. The mean bitrate values are derived for comparing different scenarios. The results show an improvement compared with the baseline results. This paper concludes that machine learning algorithms may be useful in terms of small cell location selection and also for allocating users to small cell base stations.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.