Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  unsteady heat transfer
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Given the importance of thermal insulation in the walls of buildings to provide both electrical energy and thermal comfort in different weathers. In this research, the ANSYS-14 simulation program was used, considered one of the programs used to evaluate the thermal behavior of buildings, considering the effect of weather changes and building components during the steady and unsteady heat transfer of a composite wall from several layers. The simulation program was used for four types of insulation inside the wall with different thermal properties (Glass-Fiber Slab, Polyurethane Board, Hardboard (Medium) and Softwoods). A model was built for a traditional wall without an insulator and a model for a traditional wall that contains an insulator in different locations (from the outside, in the middle, and from the inside). Also, the model was isolated from the top and bottom surfaces, and each insulation material was applied in three locations in the wall. The conventional composite wall was exposed to a constant thermal load of 60 °C from the outside, and the inside wall was exposed to a thermal load of 25 °C This study focused on three steps. The first step is to know the best type of the four thermal insulators used in this study. The second step was to evaluate the best location of the insulator in the wall. The third step included the results of the previous two steps through which the best insulator was chosen and the best location in the wall. Three values of insulator thickness 2, 5 and 8 cm were used. Through the results of the study, it was found that placing the insulator on the outside of the wall plays a large role in reducing the rate of unsteady heat transfer and that its effect decreases by approaching the steady state, as it does not affect it in the case of the total steady state. The results also showed that the rate of unsteady heat transfer decreases by decreasing the thermal diffusivity of materials. It is also noticeable that the effect of the density and specific heat capacity appears clearly at the beginning of the thermal loading on the material. That effect decreases by approaching the steady state as the effect of the heat transfer coefficient of conduction appears. It was also found that both hardboard and polyurethane are the best in thermal insulation. It was also observed that the relationship between heat transfer rate and thickness is inverse-linear.
2
EN
Design of supersonic HI rocket by the Rocketry Group of Students' Space Association (SR SKA) requires an analysis of thermal phenomena occurring in the elements particularly exposed to the high temperature gas. This paper contains a description of the methodology and the results of numerical simulation of heat transfer in the elements of the rocket head. The starting points were the flight conditions (3 characteristic points defined by altitude and Mach number) and independently calculated adiabatic temperature field of the gas. ANSYS Fluent code was used to determine the temperature field on the surface of the rocket. Computed cases were viscous and inviscid flow (for comparison). Based on the results formulated for the viscous case heat transfer boundary conditions, the numerical model and the thermophysical properties of materials were defined. The model was limited to a brass top part of the head and a part of a composite dome. Analytical and empirical method of "intermediate enthalpy" determined distribution of the heat transfer coefficient on the rocket surface. Then the transient heat transfer was calculated with the ANSYS system. It included the range from the rocket launch, moment of maximum Mach number to sufficient structure cooling. The results of the analyses were conclusions relevant to the further development work. Excessive heating of composite structures during the flight has been shown.
PL
Niniejszy artykuł zawiera opis metody oraz wyniki numerycznej symulacji wymiany ciepła w elementach głowicy rakiety. Punkt wyjścia stanowiły założone warunki lotu (3 punkty charakterystyczne określone przez wysokość i liczbę Macha) i wyznaczone niezależnie adiabatyczne pole temperatury gazu. Do wyznaczenia pola temperatur na powierzchni rakiety użyty został system ANSYS Fluent. Zostały' obliczone przypadki przepływał lepkiego i nielepkiego (dla porównania). Na podstawie wyników* dla przypadku lepkiego sformułowano warunki brzegowe wymiany ciepła, założenia modelu numerycznego. Model ograniczono do mosiężnej części noskowej i fragmentu kompozytowej kopułki. Metodą analityczno-empiryczną „średniej entalpii" (intermediate enthalpy) wyznaczono rozkład współczynnika przejmowania ciepła na powierzchni rakiety. Następnie dokonano obliczenia nieustalonej wymiany ciepła z wykorzystaniem systemu ANSYS. Obejmowały one zakres od startu rakiety, poprzez moment osiągnięcia maksymalnej liczby Macha, do wystarczającego schłodzenia konstrukcji. Efektem pracy było sformułowanie wniosków istotnych z punktu widzenia dalszych prac konstrukcyjnych, wykazano nadmierne ogrzewanie elementów kompozytowych w trakcie lotu.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.