Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  unmanned surface vehicle
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The operation of offshore structures at sea requires the implementation of advanced systems for their permanent monitoring. There is a set of novel technologies that could be implemented to deliver a higher level of effective and safe operation of these systems. A possible novel solution may be the application of a new maritime unmanned (USV) surface and underwater vehicles/platforms (AUV). Application of such vehicles/platforms may increase the level of operability and safety of the offshore structures and installations. Practical use of these platforms requires the application of advanced forms of different technologies to platform structures, materials, strength of structures, applied propulsion systems, energy supply sources, dynamics of platforms, control, and communication systems. The new control and communication systems may require an application of AI (artificial intelligence) technology to obtain more advanced offshore monitoring systems. The application of the USV/AUV platforms for monitoring offshore structures may provide an increase in the functionality, performance, and safety levels of those structures in operation. This paper presents a concept for an offshore monitoring system based on the application of the USV/AUV platforms. The complexity of the research is shown by presenting the performance-oriented risk-based method. The basic information on the platforms is given. The main drivers that determine the functionality, performance, and safety of the USV/AUV platforms are introduced. A brief description of the primary operational characteristics of the platforms is presented. An example of a simple operational procedure (scenario) during the monitoring of an offshore structure is described. In the final part of this paper, conclusions are given.
EN
Hydrographic and photogrammetric measurements in the coastal zone are performed using hydroacoustic and optoelectronic methods, in particular with the use of Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicles (USV). It should be remembered that each of the devices registers data in a different spatial reference system. Therefore, before starting the analysis of geospatial data, e.g. terrain relief, it is necessary to carry out the process of their integration (harmonisation). The aim of this article is to present a multi-sensor integration of hydroacoustic and optoelectronic data acquired from UAV and USV vehicles on the inland waterbody. Bathymetric, Light Detection And Ranging (LiDAR) and photogrammetric measurements were carried out on the Lake Kłodno (Poland) in 2022 using the DJI Phantom 4 RTK UAV and two unmanned vessels: AutoDron, which was equipped with a Global Navigation Satellite System (GNSS) Real Time Kinematic (RTK) receiver and a Single Beam Echo Sounder (SBES), as well as HydroDron, on which a GNSS/Inertial Navigation System (INS) and a LiDAR sensor were mounted. The topo-bathymetric chart generated using the Surfer software by the Inverse Distance to a Power (IDP) (p=1) method was developed. A Digital Terrain Model (DTM) generated by the IDP method is characterised by high accuracy. The difference between the interpolated value and the measurement value for the R68 measure is 0.055 m, while for the R95 measure, it has a value of 0.187 m. Research has shown that multi-sensor fusion of geospatial data ensures the possibility of performing bathymetric, LiDAR and photogrammetric measurements in the coastal zone in accordance with the accuracy requirements provided for the International Hydrographic Organization (IHO) Exclusive Order (horizontal position error ≤ 1 m (p=0.95), vertical position error ≤ 0.15 m (p=0.95)).
EN
The unmanned surface vehicles (USV) are required to perform a dynamic obstacle avoidance during fulfilling a task. This is essential for USV safety in case of an emergency and such action has been proved to be difficult. However, little research has been done in this area. This study proposes an emergency collision avoidance algorithm for unmanned surface vehicles (USVs) based on a motion ability database. The algorithm is aimed to address the inconsistency of the existing algorithm. It is proposed to avoid collision in emergency situations by sharp turning and treating the collision avoidance process as a part of the turning movement of USV. In addition, the rolling safety and effect of speed reduction during the collision avoidance process are considered. First, a USV motion ability database is established by numerical simulation. The database includes maximum rolling angle, velocity vector, position scalar, and steering time data during the turning process. In emergency collision avoidance planning, the expected steering angle is obtained based on the International Regulations for Preventing Collisions at Sea (COLREGs), and the solution space, with initial velocity and rudder angle taken as independent variables, is determined by combining the steering time and rolling angle data. On the basis of this solution space, the objective function is solved by the particle swarm optimization (PSO) algorithm, and the optimal initial velocity and rudder angle are obtained. The position data corresponding to this solution is the emergency collision avoidance trajectory. Then, the collision avoidance parameters were calculated based on the afore mentioned model of motion. With the use of MATLAB and Unity software, a semi-physical simulation platform was established to perform the avoidance simulation experiment under emergency situation. Results show the validity of the algorithm. Hence results of this research can be useful for performing intelligent collision avoidance operations of USV and other autonomous ships.
EN
In recent years, unmanned surface vehicles have been widely used in various applications from military to civil domains. Seaports are crowded and ship accidents have increased. Thus, collision accidents occur frequently mainly due to human errors even though international regulations for preventing collisions at seas (COLREGs) have been established. In this paper, we propose a real-time obstacle avoidance algorithm for multiple autonomous surface vehicles based on constrained convex optimization. The proposed method is simple and fast in its implementation, and the solution converges to the optimal decision. The algorithm is combined with the PD-feedback linearization controller to track the generated path and to reach the target safely. Forces and azimuth angles are efficiently distributed using a control allocation technique. To show the effectiveness of the proposed collision-free path-planning algorithm, numerical simulations are performed.
PL
Niestabilne ceny ropy naftowej, czy też aspekty ekologiczne związane z redukcją emisji dwutlenku węgla do atmosfery przyczyniły się do poszukiwań nowych źródeł energii. Jedną z technologii nowych źródeł energii elektrycznej, gwałtownie rozwijających się w ostatnim czasie są ogniwa paliwowe, m.in. z membraną polimerową, charakteryzujące się wysoką gęstością energetyczną oraz sprawnością w porównaniu do klasycznych źródeł energii elektrycznej, czyli akumulatorów. Z uwagi na ekologiczną, efektywną i cichą pracę technologia ta znajduje zastosowanie w wielu różnych urządzeniach. W niniejszym artykule zajęto się problemem zastosowania technologii ogniw paliwowych z membraną polimerową PEMFC (ang. Polymer Electrolyte Membrane Fuel Cell) do zasilania elektrycznego bezzałogowego pojazdu nawodnego BPN w zastosowaniach militarnych. W ramach zrealizowanej pracy opracowano scenariusze misji rozpoznawczej dla BPN, opracowano symulator systemu zasilania BPN, bazujący na ogniwach paliwowych oraz przeprowadzono testy numeryczne.
EN
Unstable oil prices, or ecological aspects associated with the reduction of carbon dioxide emissions to the atmosphere, have contributed to the search for new sources of energy. One of the technologies of new sources of electricity, rapidly developing in recent years are fuel cells, among others with a polymer membrane, characterized by high energy density and efficiency compared to conventional sources of electricity, i.e. batteries. Due to its ecological, efficient and quiet operation, this technology is used in many different devices. This article deals with the use of the Polymer Electrolyte Membrane Fuel Cell (PEMFC) fuel cell technology for the electrical supply of unmanned surface vehicle USV in military applications. As part of the work carried out, scenarios of reconnaissance missions were developed for USV, USV fuel cell simulator was developed, and numerical tests were performed.
6
Content available remote Klasyczny system antykolizyjny dla bezzałogowego pojazdu nawodnego
PL
W artykule zaprezentowano trzy koncepcje klasycznych systemów antykolizyjnych (SA) dla Bezzałogowego Pojazdu Nawodnego (BPN). Systemy klasyczne są rozumiane jako systemy wnioskujące na innych zasadach niż ma to miejsce np. w systemach rozmytych czy sieciach neuronowych. W tych pierwszych mamy do czynienia z wnioskowaniem regałowym, natomiast w drugich decyzje podejmowane są przez neurony połączone w sieć. Systemy klasyczne, tak jak są rozumiane w sprawozdaniu, to systemy algorytmiczne, których wynik działania jest rezultatem odpowiednio uporządkowanych obliczeń na danych wejściowych.
EN
In the paper, three concepts of classical anti-collision systems for Unmanned Surface Vehicle are presented. Classical systems are understood as systems which make decisions in a different way than for example fuzzy systems or neural networks. In the former case, we deal with reasoning rules whereas in the latter one decisions are made by neurons organized in a network. In turn, classical systems are algorithmic systems whose working result is an effect of appropriately arranged calculations on input data.
PL
W niniejszej pracy staraliśmy się wykazać, że właściwym sposobem radzenia sobie z brakiem precyzji danych spotykanych w procesie planowania działań operacyjnych, szczególnie w rejonie wód przybrzeżnych, jest odwołanie się do informacji przestrzennej o prądach morskich. Przedstawiliśmy sposoby jakie wykorzystujemy do pozyskiwania niezbędnych dla nas danych środowiskowych oraz metody ich praktycznego wykorzystania. Na przykładzie opracowywanej przez nas bezzałogowej platformy pływającej pokazaliśmy, iż tego typu dane są niezbędne do realizacji zadań operacyjnych w strefie przybrzeżnej przez pojazdy bezzałogowe.
EN
Operational tasks are directed into shallow waters, therefore the use of unmanned vehicles might be very useful. Research in this area is conducted in many countries. We need very detailed data about the present and future state of the environment where the UV operate. This is the primary requirement. In this paper, we present the first Polish Unmanned Surface Vehicle, supported by the Polish Ministry of Science and Higher Education, grant 0 ROO 0004 07.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.