This paper presents the results of experimental studies aimed at determining constitutive parameters for selected constitutive equations of flow stress as a function of the natural aging time of 2 mm thick AlCu4Mg1 (AW-2024) sheet. The knowledge of these constitutive parameters as a function of aging time is necessary to analyze and model the processes of forming sheet metal stampings after heat treatment during natural aging. The constitutive parameters in individual constitutive equations were determined on the basis of the approximation of the course of strain hardening curves. The courses of these curves for the tested natural aging times in the range of 0-120 minutes after heat treatment were made on the basis of uniaxial stretching tests of samples taken in the directions of 0, 45 and 90 degrees to the direction of sheet rolling. The values of constitutive parameters as a function of natural aging time were determined for four popular models of flow stress: Hollomon, Swift, Voce and El-Magd. Moreover, the relationship between the natural aging time and the value of the yield strength in the tested aging time range was determined, and the accuracy of the investigated constitutive equations for describing the course of the flow stress of the tested sheet material was assessed on the basis of the analysis of approximation errors.
In currently presented paper, authors are focusing on the isotropic hardening function parameters, of the Chaboche`s model, which is applied for description on fundamental properties of specially performed granular structures. Basic interests are centered around the influence of a single grains material on values of previously mentioned parameters. Obtained results will be discussed on the basis of uniaxial tensile tests, carried out on the special testing specimen.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.