Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  underground ventilation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper outlines a theoretical method of finding 3D velocity fields and methane and dust concentrations in the air in blind drifts with a force-exhaust overlap ventilation system incorporating a forcing duet with a vortex duet and an auxiliary exhaust duct with the dust separator. The solution is supported by equations and simulation programs utilizing the CFD approach. The air and methane mixture is assumed to be an ideal and compressible gas, its motion is taken to be steady and the whole process is assumed to be isothermal. Fresh air is assumed to be a three-component mixture of nitrogen, oxygen and water vapour. The problem considered in this study is described with continuity equations, Navier-Stokes equations, [...] model equations as well as transport equations of chemical species (components of air-methan mixture). Calculation data are presented in the form of velocity field images, streamlines and mass fractions of CH4. Fig. 2 shows velocity distributions in the selected drift cross-sections in the considered flow region (Fig. I). The air vortex, generated by the vortex duet, moves towards the face head and in the direction of the overlap zone. The actual division of the air stream depends on the ratio of air volume supplied to the overlap zone to that supplied to the face region. The air jet leaving the dust separatpr installation produces in its wake a zone of about 15 m, dominated by recirculation flow. Fig. 4 shows the distribution of mass fractions of methane, assuming that methane should enter via the face region and via the belt-shaped section in the floor, in the central part of the overlap zone. Apart from expected methane concentration levels near the roof (in the face region), there are other methane concentration zones caused by flow obstacles, such as continuous mining machines and forsing duet system here located near the side walls. This is associated with the development of low-intensity airing zones, where methane concentrations are higher. The flow of air-solid particles mixture is governed by the two-phase Euler- Lagrange's model with the gaseous continuous phase and a dispersed phase comprising solid (dust) particles. Apart from solving the equations of mass, momentum and energy conservation for the continuous phase, the model utilizes the trajectories of dispersed phase particles. It is assumed that dust is emitted from the face head surface. Images of several hundred particles' trajectories, originating in the face head section, are shown in Figs 5, 6. Small ratio of air in the overlap zone helps contain the dust cloud in the face region. As the amounts of air in the overlap zone increase, the highly dusted zone enlarges, too. Tables 1 and 2 summarize the dust measurement and calculation data in the selected dńft locations and the length of time that solid particles remain in the face zone. In qualitative terms, simulation data obtained using the Euler-Lagrange's two-phase flow model are consistent with the data quoted in literature and with practical observations A fuli quantitative analysis, however, would require us to find the degree of correspondence between the simulation and experimental data. Calculations are supported by the program FLUENT 6.1.
PL
W artykule zaprezentowano teoretyczny sposób wyznaczania 3D pól prędkości przepływu, stężeń metanu i pyłu w powietrzu w wyrobisku z kombinowanym systemem wentylacji, składającym się z zasadniczego lutniociągu tłoczącego zakończonego lutnią wirową oraz pomocniczego lutniociągu Ssącego z odpylaczem. Rozwiązywanie oparto o równania i programy symulacyjne stosowane w Numerycznej Mechanice Płynów. Założono, że mieszanina powietrzno-metanowa jest gazem doskonałym i ściśliwym, ruch mieszaniny jest ustalony zaś proces przebiega w warunkach izotermicznych. Przyjęto, że powietrze świeże jest trójskładnikową mieszaniną azotu, tlenu i pary wodnej. Rozważany problem opisany jest układem równań ciągłości, Naviera-Stokesa oraz równań modelu k-e i transportu składników chemicznych (składników mieszaniny powietrzno-metanowej). Rezultaty obliczeń przedstawiono w postaci obrazów pól prędkości, linii prądu oraz rozkładów udziałów masowych [...]. Dla przyjętego obszaru przepływu (rys. I) na rys. 2 przedstawiono rozkłady prędkości w wybranych przekrojach poprzecznych wyrobiska. Wir powietrzny, wytwarzany przez lutnię wirową przemieszcza się zarówno w kierunku czoła przodka jak i w kierunku strefy zazębiania. Ilościowy podział strumienia powietrza zależy od stosunku strumienia objętości powietrza w strefie zazębiania lutniociągów do strumienia objętości powietrza doprowadzonego do przodka. Ze strugą powietrza wypływającą z instalacji odpylającej związana jest strefa o długości około 15 m charakteryzująca się przepływem recyrkulacyjnym. Na rys. 5 przedstawiono rozkłady udziałów masowych metanu przy założeniu. że metan dopływa przez powierzchnię czoła przodka oraz przez pas usytuowany na spągu w środkowej części strefy zazębiania. Oprócz spodziewanych obszarów z przystropowymi nagromadzeniami metanu (w pobliżu przodka) charakterystyczne są również te, które powodowane są obecnością w przepływie przeszkód takich jak kombajn i lutniociąg tłoczący, w przykładzie ułożony na spągu chodnika w niedalekiej odległości od ociosu. Jest to związane z powstaniem stref o małej intensywności przewietrzania a zarazem o podwyższonym stężeniu metanu. Przepływ powietrze-cząstki stałe opisano przy pomocy modelu dwufazowego Eulera-Lagrange'a z gazową fazą ciągłą i złożoną z cząstek stałych (pyłu) fazą rozproszoną. Oprócz rozwiązania układu równań zachowania masy, pędu i energii dla fazy ciągłej w modelu tym wyznacza się trajektorie cząstek fazy rozproszonej. Równanie ruchu, reprezentujące bilans sił działających na cząstkę stałą, zapisane we współrzędnych Lagrange' a ma postać (1) zaś tory cząstek wyznaczane są z równania (2). Przyjęto, że pył emitowany jest z powierzchni czoła przodka. Cząstki stałe mają kształt kulisty o średnicy [...], ich gęstość wynosi 1400 kg/m3 zaś prędkość początkowa 5 m/s. Obraz kilkuset trajektorii cząstek stałych, rozpoczynających się na płaszczyźnie czoła przodka przedstawiono na rys. 5 i 6. Przy małym udziale powietrza w strefie zazębiania obłok pyłu skutecznie utrzymywany jest w strefie przodkowej.
2
PL
W artykule podjęto próbę opisu zjawiska prądów wstecznych za pomocą metody numerycznej. Obszar przepływu tworzy upadowa o długości 150 m, nachylona pod kątem 15 stopni do poziomu. W warunkach izotermicznych strumień powietrza kierowany jest na upad. Na powierzchni spągu i stropu upadowej, na odcinku o długości 10 m przyjmowano temperaturę wyższą niż w jej pozostałej części. Rozważany problem opisany jest układem równań ciągłości, Naviera-Stokesa, energii i modelu turbulencji k-epsylon (kinetyczna energia turbulencji, szybkość dyssypacji kinetycznej energii turbulencji). Wykonano wariantowe obliczenia dla różnych temperatur ścian ogrzewanego segmentu upadowej. Analizowano obrazy pola prędkości charakteryzujące poszczególne etapy związane z tworzeniem i rozprzestrzenianiem się prądów wstecznych. Wiarygodność obliczeń numerycznych oceniono przez porównanie z publikowanymi wcześniej wynikami pomiarów. Obliczenia wykonano programem FLUENT 6.1.
EN
An attempt to describe the reverse flow phenomena through numerical simulation was undertaken in this paper. The flow domain creates a 150 m long declined gallery with 15 degrees angle of inclination. The airflow is descending in isotropic conditions. In 10 m long gallery's section a hihger temperature of foor and roof than on remining rock surfaces was assumed. The cosidered problem is described by a system of equations of continuity, Navier-Stokes and energy together with k-epsylon turbulence model. The calculations were performed for different wall temperatures of heated gallery's section. The flow field patterns, characterizing the respective stages of reverse flow expasion are analyzed. CFD code validation based on the experimental data were performed. The numerical calculations by the programme FLUENT 6.1 have been supported.
PL
Przedmiotem rozważań są problemy i możliwości związane z numerycznym modelowaniem przepływów w wyrobiskach ślepych. Uwaga skoncentrowana jest na prognozowaniu wielkości wentylacyjnych w komorach o parametrach charakterystycznych dla systemu eksploatacji stosowanego w kopalniach LGOM. Omówiono podstawy matematycznego modelowania przepływów turbulentnych. Rozwiązywany układ złożony jest z 3D równań ciągłości, Reynoldsa, turbulentnego transportu składnika chemicznego oraz równań modelu k-epsylon (kinetycznej energii turbulencji i szybkości dysypacji tej energii). Przy dyskretyzacji równań stosowano metodę objętości kontrolnej oraz technikę UPWIND. W opracowanych kodach numerycznych wykorzystano schemat hybrydowy. Nieliniowe układy równań dyskretnych rozwiązywano, stosując procedurę SIMPLER. Przedstawiono wyniki obliczeń 3D pola prędkości i koncentracji gazów w komorach. Badano możliwość skutecznego eliminowania zagrożeń gazowych pochodzących od maszyn wyposażonych w silniki spalinowe i będących wynikiem robót strzałowych. Zamieszczono wyniki symulacji numerycznej ustalonego pola prędkości oraz czasoprzestrzennego pola stężeń gazów szkodliwych przy skupionych i rozłożonych źródłach gazów. Spostrzeżenia wynikające z wariantowych obliczeń umożliwiają określenie warunków, przy których komory mogą być skutecznie przewietrzane wentylatorami wolno-strumieniowymi. Dokładność odwzorowania numerycznego oceniano, porównując wyniki obliczeń z pomiarami. Uznano, że wygenerowany na drodze numerycznej obraz pola prędkości i pola stężeń domieszek gazowych odzwierciedla pola rzeczywiste z wystarczającą dla praktycznych celów dokładnością.
EN
The study explores the potential of numerical modelling of airflow in blind headings. The main focus is forecasting the ventilation parameters in headings and galleries characteristic of copper mines belonging to the LGOM Corporation. The fundamentals of mathematical modelling of turbulent flows are provided. The model makes use of 3D continuity and Rynolds equations, the equation of turbulent transport of chemical components and the equations of the k-epsylon model (kinetic energy of turbulence, the rate of kinetic energy dissipation). The discretisation procedure involved the control volume method and the technique UPWIND. The developed numerical codes employ the hybrid schemes and power-law techniques. Nonlinear systems of discrete equations were solved with the use of SIMPLER procedures. 3D velocity fields and gas concentrations calculated for galleries are provided. The chief objective is to eliminate the hazardous conditions caused by the presence of gas pollutants emitted by diesel-powered engines in machines and produced in the course of blasting operations. The results of numerical solutions of steady-state velocity field and the time-space field of concentration of gaseous pollutant emitted by lumped or distributed gas sources are presented. The accuracy of numerical representation is evaluated by comparing the prognosticated values with measurements. The obtained physical fields by way of numerical procedures portray the real fields sufficiently well for practical purposes.
4
Content available remote Numerical simulation of airflowin blind headings ventilated with jet fans
EN
The paper presents a method of calculation of velocity field in blind galleries ventilated by jet fans. The CFD code was used in numerical prediction of the airflow. Mathematical model consists of equations of continuity, Navier-Stokes and the standard equations of k-[epsilon] model of turbulence. The governing equation system is modified in near-wall region by introducing the wall function. There was assumed that the flow is turbulent, geometrically three-dimensional and the air could be treated as an incompressible gas. There were studied the flow fields obtained for two galleries with different cross-sections. Calculations and in situ measurements were performed for galleries in cooper mines. The calculated flow field, projected on same horizontal planes is presented. The measurements were taken in four cross-sections of gallery. A rotating vane anemometer and velometer were used in measurements. The experimental results were used to test simulation data. The quantitative correlation between experimental and numerical results is good but there are notified quantitative differences, however the accuracy of numerical representation seems to be sufficient for practical applications. The reasons of above differences stick both in simplifications of theoretical model as well as in measurement technics. The selection of proper boundary conditions on walls (giving consideration to roughness of surfaces) and at inlet is fundamental for accurate predictions.
PL
Eksploatacja w kopalniach LGOM-u polega na rozcinaniu złoża pasami i komorami na filary technologiczne. Komory tworzą wyrobiska ślepe o długościach wynoszących przeważnie 25-30 m, które przewietrzane są wentylatorami wolnostrumieniowymi instalowanymi na ich wlotach. Skuteczność przewietrzania zależy od zasięgu strumienia generowanego przez wentylator, a jej ocena może opierać się na istniejącym rozkładzie parametrów takich jak prędkość przepływu, temperatura powietrza czy stężenie gazów. W artykule przedstawiono teoretyczny sposób wyznaczania pola prędkości w wyrobiskach ślepych przewietrzanych wentylatorami wolnostrumieniowymi oraz w oparciu o pomiary in situ podjęto próbę weryfikacji modelu. Do opisu ruchu powietrza w komorze wykorzystano techniką bazującą na metodach CFD. Rozważany przepływ jest typu eliptycznego, można w nim wyróżnić obszar ze strugą nawiewną, strefą objętą przepływem recyrkulacyjnym i warstwą z przepływem przyściennym. Model matematyczny złożony jest z równań Naviera-Stokcsa (1) i ciągłości (2) oraz dwu równań (4), (5) tworzących model lepkości turbulentnej k-[epsilon] ( kinetyczna energia turbulencji, dyssypacja kinetycznej energii turbulencji). Warunki brzegowe na ścianach zadawane są w postaci funkcji przyściennych uwzględniających chropowatość powierzchni. Przy formułowaniu równań zachowania opisujących przepływ w warstwie przyściennej korzystano z badań J. Nikuradzego. W rozwiązaniu numerycznym stosowano dwuwarstwowy model funkcji ściany, oparty na równaniach (10) i (11). Naprężenia styczne na ściance chropowatej wyznaczano z zależności (12) i (13). W węzłach bezpośrednio przylegających do ścian sztywnych model turbulentny jest modyfikowany poprzez uwzględnienie w równaniu (1) siły powodującej zmniejszanie prędkości w warstwie przyściennej, wynikającej z zależności (12), (13). Również w członach źródłowych równania (4) wprowadza się odpowiednie zmiany uwzględniające naprężenia styczne zdefiniowane wzorami (12), (13). W rozważaniach przyjmuje się, że przepływ ma charakter turbulentny 3D, a powietrze jest gazem nieściśliwym. Dyskretyzację obszaru przeprowadzono w oparciu o siatkę różnicową o przesuniętych węzłach. Przy wyprowadzaniu schematu różnicowego korzystano z metody objętości kontrolnej oraz techniki up wind. Człony konwekcyjne i dyfuzyjne aproksymowano schematem hybrydowym. Do wyznaczania pola prędkości i ciśnień stosowano algorytm (Branny 2000) wzorowany na procedurach SIMPLE/SIMPLER. Obliczenia i pomiary in situ prędkości przepływu powietrza wykonano dla dwóch komór różniących się wymiarami poprzecznymi i polami przekrojów. Kształt i wymiary komór, w których wykonano pomiary przedstawiono na rysunku 1. Wyrobiska przewietrzane były wentylatorami WOO-63. W obliczeniach numerycznych przyjęto, że komory mają kształt prostopadłościanów o wymiarach 5,0 x 2,0 x 27 m i 5,5 x 4,0 x 26 m. Wyznaczone pola prędkości prezentowane są w postaci rzutów na wybrane płaszczyzny pionowe (x1-x3) i przedstawione na rysunkach 2 i 3. W obu wariantach strumień powietrza płynie do przodka wzdłuż ścian wyrobiska przy których umieszczony jest wentylator, natomiast strumień powrotny wzdłuż ścian przeciwległych. Strefa wyrobiska rozciągająca się od wentylatora na odległość 17-18 m charakteryzuje się intensywnym mieszaniem powietrza. Ilość recyrkulującego powietrza w znacznej jej części przekracza wydatek wentylatora. Prędkość przepływu powietrza mierzono anemometrem skrzydełkowym firmy Lambrecht, welometrem precyzyjnym firmy Luga oraz anemometrem czaszowym firmy Castell. Rysunki 4, 5 i 6 przedstawiają rozkłady prędkości (obliczonej i zmierzonej) wzdłuż linii pomiarowych (osi x2) w trzech wybranych przekrojach poprzecznych komory niskiej. Zmierzone i obliczone maksymalne i minimalne prędkości w odległościach równych 0,5 m od stropu i spągu oraz w połowie wysokości wyrobiska zestawiono w tabeli 1. Pod względem jakościowym, wygenerowany na drodze numerycznej obraz pola prędkości odzwierciedla przepływ rzeczywisty, odnotowuje się natomiast różnice ilościowe. Przyczyn tych różnic można upatrywać zarówno w uproszczeniach tkwiących w modelu teoretycznym, jak i w technice pomiaru prędkości przepływu. Zależności (12) i (13) uwzględniają tzw. chropowatość piaskową, opierającą się na jednym wymiarze charakterystycznym - wymiarze nierówności ściany. Wiadomo, że wpływ ma nie tylko wysokość nierówności, ale również ich kształt oraz gęstość rozmieszczenia na powierzchni. Wyrobiska górnicze charakteryzują się dużą, niejednorodną chropowatością ścian. Jest to rodzaj przewodów wentylacyjnych nic mający odpowiednika w innych zastosowaniach technicznych. W piśmiennictwie brakuje sprawdzonych wzorów uwzględniających wpływ tego typu chropowatości na przepływ w warstwie. Przy stosowanej technice pomiaru wielkością mierzoną był moduł wektora prędkości, natomiast kierunek i zwrot określano wizualnie. Przy tej metodzie błąd pomiaru może być znaczny, szczególnie w obszarach o zmiennym kierunku przepływu. Pomimo stwierdzonych różnic ilościowych pomiędzy obliczeniami i pomiarami można uznać, że wyniki symulacji numerycznej opisują przepływ rzeczywisty z wystarczającą dla praktyki dokładnością. Dokładność odwzorowania zależy przede wszystkim od wyboru właściwych warunków brzegowych na ścianach sztywnych (uwzględniających dużą chropowatość powierzchni) oraz w otworze nawiewnym.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.