Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  unconventional resources
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Artykuł dotyczy wykorzystania technologii wiercenia otworów kierunkowych – tzw. intersekcyjnych, które Polskie Górnictwo Naftowe i Gazownictwo SA wykonało w ramach prac badawczych prowadzonych w latach 2016–2021. Projekt miał na celu wykorzystanie nowoczesnych technologii w próbach rozpoznania złóż niekonwencjonalnych – formacji węglowych o niskiej przepuszczalności i niskim ciśnieniu złożowym, otworami wierconymi z powierzchni na terenie Górnośląskiego Zagłębia Węglowego. Przedstawiono zasadę gromadzenia się gazu w węglu (zjawisko adsorpcji opisywane modelem Langmuira) oraz sposób eksploatacji przez odwrócenie tego zjawiska i doprowadzenie do desorpcji przy wykorzystaniu odwadniania górotworu przez pompę zamontowaną w otworze pionowym poniżej intersekcji z otworem poziomym (horyzontalnym). Wyjaśniono celowość wiercenia otworu z odcinkiem horyzontalnym jako sposób zwiększenia strefy drenażu formacji produktywnej. W artykule zwrócono uwagę na zagadnienia związane z mechaniką górotworu, a dokładnie z określeniem kierunków naprężeń jako kluczowego parametru przy ustalaniu trajektorii otworów, które mają podlegać szczelinowaniu hydraulicznemu. Orientacja otworu prostopadle do kierunku maksymalnych naprężeń SHmax pozwala osiągać maksymalną wielkość stymulowanej strefy przyodwiertowej podczas zabiegu intensyfikacyjnego. Kluczowym fragmentem artykułu jest opis prac związanych z projektowaniem, a następnie wykonaniem systemu przecinających się (intersekcyjnych) otworów kierunkowych. Pionierskość omawianego projektu polegała zarówno na zastosowaniu technologii namierzania magnetycznego (ang. active magnetic rangening), jak i na wierceniu systemu otworów z jednego „placu” w sąsiedztwie dodatkowego otworu (również intersekcyjnego z otworem pionowym). Wykorzystane technologie wiercenia RSS (ang. rotary steerable system) pozwoliły na zrealizowanie zaprojektowanych trajektorii otworów i trafienie narzędziem o średnicy 6 cali w rurę z włókna szklanego o średnicy 7 cali na głębokości około 850 metrów. We wnioskach autorzy podkreślają innowacyjność wykonanych prac, zarówno w skali firmy, kraju, jak i światowej. Podają również przykłady zastosowania wykorzystanych technologii. Wart podkreślenia jest fakt, że wykonalność zaprojektowanych prac badawczych została potwierdzona w zastosowaniu przemysłowym.
EN
The article examines the use of directional and intersection drilling technology applied by Polish Oil and Gas Company (PGNiG) as part of research work carried out between 2016 and 2021. The project was aimed at using advanced technologies in assessment of prospectivity of unconventional reservoirs – coal formations with low permeability and low pore pressure with wells drilled from the surface in the Upper Silesian Coal Basin. Firstly, the mechanism of gas accumulation in coal was described (the adsorption phenomenon defined by the Langmuir model), followed by the method of exploitation by desorption using a pump installed in a vertical well below the intersection with a horizontal section. Finally, the expediency of drilling a well with a horizontal section as a way to increase the drainage zone of a productive formation was explained. The article draws attention to the issues related to the geomechanics, and more precisely to the determination of the stress azimuth as a key parameter in determining the optimal trajectory of the wells to be subjected to hydraulic fracturing. The findings suggest that the orientation of the well perpendicular to the direction of the maximum stresses SHmax allows to achieve the maximum stimulated rock volume during the intensification treatment. The key fragment of the paper describes the work related to the design and execution of a system of intersecting directional wells. The pioneering character of the discussed project consisted in both using active magnetic ranging technology and drilling a set of wells from one location. The RSS (rotary sterable system) drilling technology allowed for the execution of the designed well trajectories and for hitting a 7-inch diameter fiberglass pipe at a depth of about 850 meters with a 6-inch diameter tool. The conclusions emphasize the innovativeness of the performed work on the local (company), national and global scale. Examples of the application of the used technologies are also provided. It is worth highlighting that the feasibility of the designed research work has been confirmed in industrial application.
EN
One of the most effective methods of development of oil and gas fields with complicated hydrocarbon production conditions is hydraulic fracturing. However, utilization of the most commonly used water-based fracturing fluids is not always expedient, for instance, in unconventional formations, reservoirs with low formation pressure containing water-sensitive minerals, low-permeable or unconsolidated rocks. American and Canadian literature indicates that the most suitable and modern frac fluid is hydrocarbon one based on liquefied petroleum gas or light hydrocarbons. The use of such fluids in the fields of the Russian Federation is perspective. The main reason to face the new technology is the presence of one of the most promising production targets in Russia – the Bazhenov formation. It is nowadays one of the most desirable objects, and at the same time one of the most difficult to be developed. Enormous reserves of oil in this formation suggest its desirability. The government has for a long time stimulated exploitation of these deposits by introducing a tax credit. Today, there is no universal approach to the development of this target. A new advanced integrated approach will address this problem and pave the way for the development of this rich source of hydrocarbons containing million tons of oil. Another promising task for the implementation of this technology may be the use of associated petroleum gas, which according to the Russian regulations must be disposed of, but the technologies currently in use in Russia do not allow this to be done sufficiently. When developing the proposed technology, it is planned to start with the use of liquefied petroleum gas (propane-butane mixture) as the main hydraulic fracturing fluid and switch to petroleum gas as the technology develops.
PL
Jedną z najbardziej efektywnych metod udostępniania złóż ropy naftowej i gazu o skomplikowanych warunkach produkcji węglowodorów jest szczelinowanie hydrauliczne. Wykorzystanie najczęściej stosowanych płynów szczelinujących na bazie wody nie zawsze jest jednak korzystne, np. w złożach niekonwencjonalnych, złożach o niskim ciśnieniu złożowym zawierających minerały wrażliwe na wodę, skałach słabo przepuszczalnych czy nieskonsolidowanych. Z literatury amerykańskiej i kanadyjskiej wynika, że najbardziej odpowiednim i nowoczesnym płynem szczelinującym jest płyn węglowodorowy oparty na skroplonym gazie lub lekkich węglowodorach. Wykorzystanie takich płynów na złożach Federacji Rosyjskiej jest perspektywiczne. Głównym powodem mierzenia się z nową technologią jest obecność w Rosji jednego z najbardziej obiecujących celów produkcyjnych – formacji Bazhenov. Aktualnie jest to jedna z najbardziej interesujących, ale równocześnie najtrudniejszych do udostępnienia formacji. Ogromne zasoby ropy naftowej oszacowane dla tej formacji wskazują na jej dużą perspektywiczność. Rząd przez długi czas stymulował eksploatację tych złóż, stosując ulgę podatkową. Dziś brak jest uniwersalnego podejścia do tego zagadnienia. Nowe, zaawansowane i zintegrowane podejście umożliwi rozwiązanie tego problemu i otworzy drogę do wykorzystania tego bogatego źródła węglowodorów, zawierającego miliony ton ropy naftowej. Kolejnym wyzwaniem wdrożenia tej technologii może być wykorzystanie gazu towarzyszącego ropie, który zgodnie z rosyjskimi przepisami musi być odseparowany od ropy, jednak obecne technologie stosowane w Rosji nie pozwalają na to w wystarczającym stopniu. Przy opracowywaniu proponowanej technologii planuje się rozpoczęcie od użycia skroplonego gazu węglowodorowego (mieszanina propan-butan) jako głównego płynu szczelinującego. W miarę rozwoju technologii planuje się przejście z gazu płynnego LPG na gaz pochodzący z ropy.
PL
W publikacji dokonano analizy metody szczelinowania za pomocą ditlenku węgla w stanie nadkrytycznym, opracowanej przez pracowników naukowych Wojskowej Akademii Technicznej w Warszawie. Analiza polegała na identyfikacji elementów sekwencji procesu szczelinowania opartego na Patencie nr 222247, wraz z ich oddziaływaniem na otaczające środowisko naturalne. Wskazano wstępną ocenę potencjalnego wpływu każdego etapu procesu szczelinowania na otaczające środowisko. Rozszerzono zakres potencjalnego umniejszonego wpływu na środowisko naturalne procesu jako całości, jak i poszczególnych etapów szczelinowania. Wymienione rozszerzenie zakresu oparto na perspektywicznych wybranych innowacjach w zakresie obsługi samego procesu szczelinowania dzięki zastosowaniu alternatywnych rozwiązań w zakresie transportu czy też pozyskania źródeł dostaw niezbędnej energii elektrycznej. W ostatecznym rezultacie stworzono zarys, optymalnego pod względem emisji, hipotetycznego cyklu życia procesu szczelinowania opartego na rozwiązaniu WAT. Artykuł jest kolejnym elementem cyklu analiz [2] nad przyjętym modelem LCA optymalnego pod względem ekologii procesu wydobycia gazu z łupków, w dalszej perspektywie także w zakresie LCC i SLCA, co warunkuje dostępność niezbędnych rzeczywistych danych do dalszych badań.
EN
The paper examines the fracking method of using supercritical carbon dioxide, developed by scientist staff of The Military University of Technology in Warsaw. The analysis was carried out by identification of elements of the fracking process sequence based on Patent No. 222247 by showing those which may affect the surrounding environment. The preliminary assessment of the potential impact on the environment of each stage of the fracking method was provided. The scope of the potential of reduced environmental impact of the fracking process as a whole and at its individual stages was expanded. The mentioned extension was based on prospective selected innovations to support the fracking process by solutions of alternative transport or sourcing of the necessary electricity supplies. The outline of the optimal level of emissions of the hypothetical life cycle of the waterless fracking process was developed. The paper is another element of the list of analyses [2] of LCA of the shale gas extraction process that is ecologically optimal. The analyses also will be conducted in the LCC and SLCA areas which are provided that available of necessary real data for further research in the long term.
PL
W artykule przedstawiono koncepcję systemów naftowych jako zespołu powiązanych ze sobą elementów i procesów zachodzących w basenach sedymentacyjnych oraz metodę modelowania ich przebiegu i skutków ze szczególnym uwzględnieniem efektów procesów naftowych, takich jak generacja, ekspulsja, sorpcja, migracja i akumulacja węglowodorów. Dyskusji poddano istotę poszczególnych składowych modelu dynamicznego (modelu strukturalno-parametrycznego, termicznego i geochemicznego), procedury ich konstrukcji oraz wzajemne relacje. Finalnym efektem dynamicznego modelowania systemów naftowych są: bilans węglowodorowy, wyznaczone strefy o wysokiej wydajności procesów generacji, wysokiego nasycenia węglowodorami macierzystej formacji łupkowej, prognoza rozmieszczenia i rozmiary potencjalnych złóż ropy naftowej i/lub gazu ziemnego. Modelowanie systemów naftowych to tworzenie dynamicznych, przestrzennych (4D) numerycznych modeli basenów sedymentacyjnych obrazujących przebieg i skutki procesów geologicznych, zachodzących w skali czasu geologicznego. Proces modelowania systemów naftowych (ang. PSM—petroleum systems modeling) polega na zbudowaniu przestrzennego, statycznego modelu, obrazującego stan obecny obszaru poszukiwawczego lub basenu sedymentacyjnego, a następnie na dynamicznej symulacji (forward modeling) przebiegu jego ewolucji, począwszy od depozycji najstarszych osadów poprzez okresy sedymentacji pełnej sekwencji osadowej (w tym tych osadów, które uległy częściowej lub całkowitej erozji) aż do stanu obecnego.
EN
The article presents a concept of petroleum systems as a set of interrelated elements and processes in sedimentary basins and the method of petroleum systems modeling, the course and consequences of the processes, with particular emphasis on the effects of petroleum processes such as generation, expulsion, sorption, migration and accumulation of hydrocarbons. The essence of individual components of the dynamic model (structural, properties, thermal and geochemical models), procedures of model construction and their mutual relationship are discussed. The special role of calibration procedures aimed at controlling individual components of the petroleum system model and its consistency has been outlined. The results of structural and parametric reconstruction of the petroleum systems evolution in the selected time steps, illustrate the course and effects of processes such as transformation of organic matter, the evolution of hydrocarbon generation window, expulsion, sorption and migration of hydrocarbons, the state of traps formation and the possibility of reservoir conservation as well as oil and gas saturation of source rock formation (as a free adsorbed and absorbed gas). The final result of the dynamic petroleum systems modeling are: the hydrocarbon budget, location of areas with a high area-yield of generation and expulsion processes, spatial variation of hydrocarbons saturation in source rock shale formation, prognosis of potential oil and natural gas reservoirs' distribution and size.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.