Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  układy mnożące
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the paper circuit implementations for four-quadrant multipliers based entirely on CMOS inverters have been shown. Experimental results for chips exploiting two architectures and manufactured by Europractice are presented. Furhermore a modifications for some functional blocks (voltage inverting buffer and current mirror) minimizing the sensitivity to process variations have been proposed. Statistical simulation data confirming the effectivness of proposed methods are also included.
PL
W artykule przedstawiono rozwiązania czteroćwiartkowych układów mnożących opartych o inwertery CMOS (klasyczne i kwazi-inwertery). Zaprezentowano wyniki pomiarowe układów zrealizowanych dzięki programowi Europractice dla obu zaproponowanych architektur. W dalszej części zaproponowano modyfikacje bloków funkcjonalnych (inwertera napięciowego i lustra prądowego) mające na celu minimalizację wpływu zmian procesu technologicznego na układ. Przedstawiono analizy statystyczne potwierdzające skuteczność zaproponowanych metod.
PL
Bezpieczeństwo układów kryptograficznych w ostatnich latach zostało poważnie zagrożone poprzez metody zaliczane do kategorii ataków typu Side-channel (SCA). Techniki "łamania" sprzętu okazały się być dużo bardziej skuteczne (szybsze i tańsze) w porównaniu do technik klasycznej kryptoanalizy. W obronie przed SCA powstał szereg implementacji zabezpieczających układy przed ulotem informacji (poprzez prąd zasilania czy promieniowanie elektromagnetyczne), a między nimi także Różnicowa Technika Prądowa (RTP). W niniejszym artykule przedstawiono i publikowano po raz pierwszy, układy temarnego dodawania i mnożenia - wykonane w oparciu o bramki RTP. Właściwości arytmetyki różnicowo-prądowej pozwalają zrealizować każdą z tych operacji przy użyciu zaledwie dwóch bramek RTP, co czyni te układy konkurencyjnymi w stosunku do analogicznych realizacji wykorzystujących tradycyjne bramki CMOS.
EN
In recent years, the security of cryptographic circuits was threatened by the methods called Side-channel Attacks (SCA). "Breaking" circuits appeared to be much more efficient (faster and cheaper) in comparison to the classical cryptanalysis. In the opposite part of research, countermeasures against leaking data from the circuits were invented (against side channels like power current or electromagnetic emanation) and in between also the Differential Current Mode Technology (DCMT). In this article were presented. and published for the first time, circuits for ternary addition and multiplication - based on DCMT gates. Features of differential and current arithmetic allow to performe each of these functions by using only two DCMT gates. This accomplishment makes the DCMT circuits competitive in comparison to circuits based on traditional CMOS gates.
PL
Zaproponowano wykorzystanie arytmetyki ułamkowej w jednostkach operacyjnych układów typu system-on-chip, implementowanych w nowoczesnych układach FPGA. Pozwala to na redukcję złożoności sprzętowej jednostek arytmetyczno-logicznych w porównaniu z podobnymi jednostkami arytmetycznymi pracującymi z liczbami stałoprzecinkowymi i zmiennoprzecinkowymi o tej samej precyzji. Jako przykład zaproponowano projekt 35-bitowej jednostki arytmetyki ułamkowej, która jest przeznaczona do wykonywania operacji dodawania, mnożenia, dzielenia, mnożenia z dodawaniem i dzielenia z dodawaniem. Architektura zaproponowanej jednostki arytmetycznej jest dostosowana do wewnętrznej struktury rekonfigurowalnych platform firmy Xilinx (jak Virtex II lub Virtex 4), dlatego jej złożoność sprzętowa jest do 4,5 razy mniejsza w porównaniu z podobnymi jednostkami arytmetyki zmiennoprzecinkowej.
EN
In this paper, use of the rational fraction arithmetic in the system-on-chip processing units destined for implementation in modern FPGA devices is proposed. This allows reduction the hardware complexity of the arithmetic-logic units in comparison with similar arithmetic units operating with fixed-point or floating-point numbers with the same precision. As an example, in this paper, the project of the 35-bit rational fraction arithmetic unit is proposed, which is destined to perform addition, multiplication, division, multiplication with addition and division with addition operations. The architecture of the proposed arithmetic unit is adapted to the internal structure of the Xilinx reconfigurable platforms (as for instance Virtex II or Virtex 4), therefore its hardware complexity is up to 4,5 times less in comparison with similar floatingpoint arithmetic units.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.