Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  układy kwantowe
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Najnowszy kierunek w projektowaniu kwantowych układów odwracalnych uwzględnia fakt, że interakcje odbywają się tylko na sąsiadujących liniach. Ostatnio zaproponowano wiele algorytmów projektowania takich układów oraz zajmowano się ich optymalizacją. W pracy przedstawiony jest przegląd tych rozwiązań oraz perspektywy rozwoju tej ważnej dziedziny.
EN
Computation is called reversible if it is realized by circuits implementing bijective mappings. It is an emerging research area which has applications in many new areas of computer science, e.g. quantum computing, nanotechnologies, optical computing, digital signal processing, communications, bioinformatics, cryptography as well as low power computation. Quantum computation, which by nature is reversible, constitutes an especially attractive field of research due to a promise of an enormous speed-up of computing processes in the future. However, it has appeared that in some quantum technologies there are intrinsic limitations, namely, physically realizable operations would be only interactions between neighbor lines (also called qubits). As reversible circuits form a subset of quantum circuits there is a need to convert general reversible circuits into the so-called Linear Nearest Neighbor (LNN) architecture. In this architecture any gate operates between adjacent qubits only. Thus, recently there has been a new research objective to develop efficient methods for designing reversible circuits in the LNN architecture. This paper gives an overview of the present advances in this field.
PL
Jedną z możliwości redukcji układów odwracalnych daje przesuwanie bramek. W pracy zaproponowano nowe reguły takich przesunięć dla układów budowanych ze standardowej biblioteki bramek odwracalnych NCT. Umożliwiają one eliminację bramek o dużej liczbie wejść/wyjść, które mają największy tzw. koszt kwantowy. Opracowane przez nas reguły mogą być stosowane dla dowolnej liczby wejść układu. Umożliwia to projektowanie układów odwracalnych o zredukowanym koszcie kwantowym. Podane przez nas przykłady pokazują, że oszczędności w porównaniu z układami publikowanymi w literaturze mogą być znaczne.
EN
Synthesis of reversible logic circuits is the most intensively studied topic of the research area called reversible computation (circuits are reversible if they represent bijective mappings). This new research area has applications in many fields of computer science, e.g. quantum computing, nanotechnologies, optical computing, digital signal processing, communications, bioinformatics, cryptography as well as in low power computation. Recent advances consist in reducing numbers of gates, garbage bits or quantum cost. Some reversible circuit synthesis algorithms generate circuits in which majority of gates have large or even maximal size (i.e. equal to the number of inputs/outputs. However, quantum cost of multi-control generalized Toffoli gates is very high. In this paper it is shown how to reduce the quantum cost of circuits by eliminating most of large gates or even all of them. Namely, a new subset of moving rules useful for reducing the quantum cost is presented. Using this subset, it is possible to reduce the number of maximal-size gates to zero for even functions, and to one for odd functions, according to the known theorem. In the paper substantial savings in the quantum cost are presented for designs taken from recent publications.
3
PL
Dopiero w 2010 roku, po całej dekadzie badań, opracowano pierwszą metodę syntezy optymalnych układów odwracalnych dla dowolnych funkcji czterech zmiennych. Układy te budowane były ze standardowej biblioteki bramek odwracalnych NCT, mających wyłącznie tzw. pozytywne sterowanie. W pracy opisujemy wyniki naszych rozszerzeń tej metody na przypadek minimalizowania kosztu kwantowego dla układów o zadanej liczbie bramek, a także na układy budowane z bramek NCT o mieszanym sterowaniu (tzn. zarówno o pozytywnym, jak i negatywnym).
EN
computation (i.e. bijective mapping). This emerging research area has applications in many new areas of computer science, e.g. quantum computing, nanotechnologies, optical computing, digital signal processing, communications, bioinformatics, cryptography as well as in low power computation. Recent advances consist in reducing numbers of gates, garbage bits or quantum cost. Synthesis of optimal reversible circuits is a very hard problem even for small input/output circuits. In 2010 a method for construction of 4-input/output optimal circuits was developed for circuits constructed using reversible gates from NCT library [5]. In the paper we present a summary of the results of our extensions to this method. We have developed an approach for minimization of quantum cost of the 4-input/output circuits [7]. Our computational experiments have been conducted for two sets of reversible gates: a standard NCT library and extended mixed-polarity NCT library, which consists of gates with both positive and negative control lines. Using our tools we have found circuits for the known reversible benchmarks which have lower quantum cost than any of the best known implementations so far. Based on the data of our experiments we have made a statistical comparison of the optimal circuits built from standard NCT and libraries.
4
Content available Constructing Quantum Circuits for Unitary Operations
EN
The article contains a description of the method on how to construct any quantum circuit, which may be represented by a binary unitary matrix. A quantum circuit may be built out of unitary gates placed parallel or serially, so at the beginning the methods of entire circuit's matrix form calculating were recalled. Next the universal matrices were presented for series circuits to show how to reduce the number of basic operations, which a quantum computer have to perform. Finally the propositions of 2-bit and 3-bit quantum circuits implementation with the use of known 1-bit and 2-bit quantum gates were shown.
PL
Artykuł zawiera opis metody konstruowania układu kwantowego, którego reprezentacja jest zero-jedynkową macierzą unitarną. Najpierw przypomniany został sposób obliczania postaci macierzowej operatora kwantowego, reprezentującego działanie układu zbudowanego z bramek kwantowych o znanych reprezentacjach macierzowych, ułożonych zarówno szeregowo jak i równolegle. Następnie pokazane zostały dwie macierze, symbolizujące kwantowe bramki n-bitowe, przy pomocy których można skonstruować dowolny n-bitowy układ kwantowych, posiadający reprezentację macierzową w postaci zero-jedynkowej macierzy unitarnej, (przy n >1). Jedna z tych bramek jest bramką Toffoli'ego i implementacja tejże bramki za pomocą uniwersalnych bramek jedno- i dwu-kubitowych jest znana [4]. W artykule została przedstawiona przykładowa implementacja drugiej uniwersalnej operacji - bramki R - dla układów dwu- i trzy-kubitowych.
PL
W artykule zaprezentowane są podstawy obliczeń kwantowych.Odpowiedniość pomiędzy macierzami unitarnymi a ciągami elementów optycznych pozwala na zademonstrowanie kilku prostych kwantowych bramek logicznych. Przedstawiona jest symulacja optyczna algorytmu Grovera szybkiego wyszukiwania.
EN
The fundamentals of quantum computation are presented. Correspondence between unitary matrices and sequences of optical elements permits to demonstrate some simple quantum logic gates. Optical simulation of the Grover algorithm for fast searching is presented.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.