Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  układ z opóźnieniem
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper proposes a new method for the analysis of continuous and periodic event-based state-feedback plus static feedforward controllers that regulate linear time invariant systems with time delays. Measurable disturbances are used in both the control law and triggering condition to provide better disturbance attenuation. Asymptotic stability and L2-gain disturbance rejection problems are addressed by means of Lyapunov–Krasovskii functionals, leading to performance conditions that are expressed in terms of linear matrix inequalities. The proposed controller offers better disturbance rejection and a reduction in the number of transmissions with respect to other robust event-triggered controllers in the literature.
EN
Stabilization of neutral systems with state delay is considered in the presence of uncertainty and input limitations in magnitude. The proposed solution is based on simultaneously characterizing a set of stabilizing controllers and the associated admissible initial conditions through the use of a free weighting matrix approach. From this mathematical characterization, state feedback gains that ensure a large set of admissible initial conditions are calculated by solving an optimization problem with LMI constraints. Some examples are presented to compare the results with previous approaches in the literature.
EN
This paper is concerned with robust stabilization of continuous linear positive time-delay systems with parametric uncertainties. The delay considered in this work is a bounded time-varying function. Previously, we have demonstrated that the equidistant delay-decomposition technique is less conservative when it is applied to linear positive time-delay systems. Thus, we use simply a delay bi-decomposition in an appropriate Lyapunov–Krasovskii functional. By using classical and partitioned control gains, the state-feedback controllers developed in our work are formulated in terms of linear matrix inequalities. The efficiency of the proposed robust control laws is illustrated with via an example.
EN
The problem of on-line identification of non-stationary delay systems is considered. The dynamics of supervised industrial processes are usually modeled by ordinary differential equations. Discrete-time mechanizations of continuous-time process models are implemented with the use of dedicated finite-horizon integrating filters. Least-squares and instrumental variable procedures mechanized in recursive forms are applied for simultaneous identification of input delay and spectral parameters of the system models. The performance of the proposed estimation algorithms is verified in an illustrative numerical simulation study.
EN
This work introduces a novel approach to stability and stabilization of nonlinear systems with delayed multivariable inputs; it provides exponential estimates as well as a guaranteed cost of the system solutions. The result is based on an exact convex representation of the nonlinear system which allows a Lyapunov–Krasovskii functional to be applied in order to obtain sufficient conditions in the form of linear matrix inequalities. These are efficiently solved via convex optimization techniques. A real-time implementation of the developed approach on the twin rotor MIMO system is included.
6
Content available remote Nonlinear adaptive time-delay control system
EN
The paper puts forward a nonlinear adaptive time-delay control system with variable gain of PI or PID controller conditioned by amplitude of signal applied to the controllers section where its gain value is generated. Simulation studies for the exemplary time variable delay controlled system are also provided. In simulation tests the controlled system was approximated by simplified first-order model with variable delay.
PL
W pracy przedstawiono nieliniowy układ kontroli z z regulatorem typu PI i PID o zmiennym wzmocnieniu w zależności od wielkości błędu regulacji. Podano strukturę regulatora o adaptacyjnym wzmocnieniu. Badania symulacyjne przeprowadzono dla modelu obiektu pierwszego rzędu ze zmiennym opóźnieniem.
7
Content available remote Equivalence and reduction of delay-differential systems
EN
A new direct method is presented which reduces a given high-order representation of a control system with delays to a firstorder form that is encountered in the study of neutral delay-differential systems. Using the polynomial system description (PMD) setting due to Rosenbrock, it is shown that the transformation connecting the original PMD with the first-order form is Fuhrmann’s strict system equivalence. This type of system equivalence leaves the transfer function and other relevant structural properties of the original system invariant.
8
Content available remote ABR traffic control over multi-source single-bottleneck ATM networks
EN
The problem of flow control in fast, connection-oriented communication networks supporting the traffic generated by multiple sources is considered. A novel sampled time strategy governing the behaviour of the sources is proposed. The strategy combines the Smith principle with the conventional sampled time proportional controller. It guarantees an equal resource allocation between various users, full bottleneck link utilisation and no cell loss in the controlled network. Consequently, the need for cell retransmission is eliminated and a high throughput is ensured. Furthermore, transmission rates generated by the algorithm are limited. This property permits a direct implementation of the proposed strategy in the network environment. A simulation example confirms favourable performances of the proposed control scheme.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.