Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  uczenie się ze wzmocnieniem
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule zaproponowano nowy, epokowo – inkrementacyjny algorytm uczenia się ze wzmocnieniem. Główną ideą tego algorytmu jest przeprowadzenie w trybie epokowym dodatkowych aktualizacji strategii w oparciu o odległości aktywnych w przeszłości stanów od stanu terminalnego. Zaproponowany algorytm oraz algorytmy R(0)-learning, R(λ)-learning, Dyna-R oraz prioritized sweeping-R zastosowano do sterowania modelem samochodu górskiego oraz modelem kulki umieszczonej na balansującej belce.
EN
The application of the average reward reinforcement learning algorithms in the control were described in this paper. Moreover, new epoch-incremental reinforcement learning algorithm (EIR(0)-learning for short) was proposed. In this algorithm, the basic R(0)-learning algorithm was implemented in the incremental mode and the environment model was created. In the epoch mode, on the basis of the model, the distances of past active states to the terminal state were determined. These distances were then used in the update strategy. The proposed algorithm was applied to mountain car (Fig. 4) and ball-beam (Fig. 5) models. The proposed EIR(0)-learning was empirically compared to R(0)-learning [4, 6], R(λ)-learning and model based algorithms: Dyna-R and prioritized sweeping-R [11]. In the case of ball-beam system, EIR(0)-learning algorithm reached the stable control strategy after the smallest number of trials (Tab. 1, column 2). For the mountain car system, the number of trials was smaller than in the case of R(0)-learning and R(λ)-learning algorithms, but greater than for Dyna-R and prioritized sweeping-R. It is worth to pay attention to the fact that the execution times of Dyna-R and prioritized sweeping-R algorithms in the incremental mode were respectively 5 and 50 times longer than for proposed EIR(0)-learning algorithm (Tab. 2, column 3). The main conclusion of this work is that the epoch – incremental learning algorithm provided the stable control strategy in relatively small number of trials and in short time of single iteration.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.