Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  typhoon
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Floating offshore wind turbines are easily affected by typhoons in the deep sea, which may cause serious damage to their structure. Therefore, it is necessary to study further the dynamic response of wind turbine structures under typhoons. This paper took the 5MW floating offshore wind turbine developed by the National Renewable Energy Laboratory (NREL) as the research object. Based on the motion theory of platforms in waves, a physical model with a scale ratio of 1:120 was established, and a hydraulic cradle was used to simulate the effect of waves on the turbines. The dynamic response characteristics of offshore wind turbines under typhoons are systematically studied. The research results clarified that the turbine structure is mainly affected by wave loads under typhoons, and its motion response reaches its maximum value under the action of extreme wave loads. The research results of this paper can provide reference value for the design of offshore wind turbine structures under typhoons.
EN
Oujiang Estuary is a complex tidal estuary with many channels and shoals in the East China Sea, which was affected by typhoon frequently. The navigation channel of Wenzhou Port is located in the north branch of Oujiang Estuary, which happened serious sediment siltation in many times due to typhoon impact. The regulation is considered to decrease siltaion of the channel and protect shoals as well. According to the site survey data, the mathematic model is established and validated, which simulates the hydrodynamic, sediment transport and channel siltation due to typhoon in Oujiang Estuary. The channel regulation scenario is studied by the model simulation after analysis of the silation character. It indicates that the high concentration sediment from shoals north of channel is main sediment source caused siltation in the channel, which can be prevented into the channel by the regulation scenario and decrease siltation efficiently.
3
Content available remote A numerical prediction system for wind and sea wave: a typhoon case
EN
A numerical model system is constructed to predict surface conditions over the open oceans for a typhoon case. Its atmospheric and oceanic components are the Weather Research and Forecasting (WRF) model and the NOAA WaveWatch version 3 (NWW3) model, respectively. The initial condition of the WRF is obtained from the NCEP aviation forecast, while the WRF-predicted surface winds serve as the boundary conditions for sea wave prediction of the NWW3.The capability of this model system is evaluated in terms of the predictions of surface wind and sea waves associated with the typhoon Bilis (No. 0604). This typhoon formed over the west side of Guam (141?E, 12?N) on July, 9, 2006, and moved northwestward across Taiwan to decay over southeast China on July, 15, 2006. Its moving track is reasonably predicted by the WRF with an averaged error of 99 km in 24-hr forecast and of 233 km in 48-hr forecast. These errors are in comparable ranges with the official typhoon forecasts conducted by weather services in the countries around the Pacific. The circulation pattern and intensity of surface winds and height of sea waves can be adequately portrayed by this prediction system in advance by 48 hrs. The dangerous and navigable semicircles of the typhoon are also clearly delineated. As such, the spatial domains of high wind and high sea are identified, providing potentially useful information for navigation safety.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.