Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  tworzywo szklano-ceramiczne
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Biosilicate glasses and glass-ceramic materials obtained on their basis are an important research area in tissue engineering due to their ability to regenerate bones. The most important features of bioactive glasses include: the ability to biodegrade and high bioactivity. Appropriate porosity, pore size, surface structure and topography, chemical composition and ion release kinetics, as well as mechanical properties enable the adhesion of mesenchymal cells and their differentiation towards osteoblast cells and stimulate further proliferation and angiogenesis. This study concerns the subject of bioglass, in particular Bioglass 45S5 and glass-crystalline porous materials in the context of their properties enabling the reconstruction of bone tissue and possible applications. The article addresses crucial issues of shaping the properties of glass and glass crystalline porous structures by introducing changes in their composition and the method of their production, and also discusses the importance of foaming agents.
EN
In this work, three glass-ceramic composites based on a commercial SiO2-B2O3-Al2O3-CaO-MgO glass and cordierite, diopside or Al2O3 were used for preparation of green tapes and low temperature cofired ceramics (LTCC) substrates. The thermal behavior, phase composition, microstructure and dielectric properties of the fabricated glass-ceramics were characterized using a heating microscope, thermal analysis, X-ray diffraction, scanning electron microscopy and time domain spectroscopy. The applicability of the developed materials for LTCC technology was demonstrated by the preparation of test multilayer substrates. The glass-ceramic substrates exhibit advantageous properties for ultra-high frequency LTCC applications, including low sintering temperatures of 900-980°C, good compatibility with commercial Ag and AgPd conductive pastes and a low dielectric permittivity of 3.5-7 at 1 THz.
3
Content available remote Patentowa(na) historia szkła, cz. 4
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.