Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  two-temperature
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This research problem is an investigation of wave propagation in a rotating initially stressed monoclinic piezoelectric thermo-elastic medium under with the effect of a magnetic field. A two-temperature generalized theory of thermo-elasticity in the context of Lord-Shulman’s theory is applied to study the waves under the magnetic field. The governing equations of a rotating initially stressed monoclinic piezoelectric thermo-elastic medium with a magnetic field are formulated. This research problem is solved analytically, for a two-dimensional model of the piezo-electric monoclinic solid, and concluded that there must be four piezo-thermoelastic waves, three coupled quasi waves (qP (quasi-P), qT (quasi-thermal), and qSV (quasi-SV)) and one piezoelectric potential (PE) wave propagating at different speeds. It is found that at least one of these waves is evanescent (an evanescent wave is a non-propagating wave that exists) and that there are therefore no more than three bulk waves. The speeds of different waves are calculated and the influence of the piezoelectric effect, two-temperature parameter, frequency, rotation, and magnetic field on phase velocity, attenuation coefficient, and specific loss is shown graphically. This model may be used in various fields, e.g. wireless communications, signal processing, and military defense equipment are all pertinent to this study.
EN
In this paper, the two-temperature thermoelasticity model is proposed to a specific problem of a thermoelastic semi-infinite solid. The bounding plane surface of the semi-infinite solid is considered to be under a non-Gaussian laser pulse. Generalized thermoelasticity analysis with dual-phase-lags is taken into account to solve the present problem. Laplace transform and its inversion techniques are applied and an analytical solution as well as its numerical outputs of the field variables are obtained. The coupled theory and other generalized theory with one relaxation time may be derived as special cases. Comparison examples have been made to show the effect of dual-phase-lags, temperature discrepancy, laser-pulse and laser intensity parameters on all felids. An additional comparison is also made with the theory of thermoelasticity at a single temperature.
EN
The purpose of this paper is to depict the effect of diffusion and internal heat source on a two-temperature magneto-thermoelastic medium. The effect of magnetic field on two-temperature thermoelastic medium within the three-phase-lag model and Green-Naghdi theory without energy dissipation i discussed. The analytical method used to obtain the formula of the physical quantities is the normal mode analysis. Numerical results for the field quantities given in the physical domain are illustrated on the graphs. Comparisons are made with results of the two models with and without diffusion as well as the internal heat source and in the absence and presence of a magnetic field.
4
Content available remote Propagation of Rayleigh wave in two-temperature dual-phase-lag thermoelasticity
EN
The governing equations of transversely isotropic dual-phase-lag two-temperature thermoelasticity are solved for the surface wave solutions. The particular solutions in the half-space satisfy the boundary conditions at a thermally insulated /isothermal stress-free surface of a half-space to obtain the frequency equation of the Rayleigh wave for the cases of coupled thermoelasticity, Lord and Shulman thermoelasticity and dual-phase-lag thermoelasticity. Some particular and special cases are obtained. The numerical values of the non-dimensional speed of the Rayleigh wave are computed and shown graphically against frequency, non-dimensional elastic constant and two-temperature parameter. The effects of frequency, two-temperature and dual-phase-lag are observed on the nondimensional speed of Rayleigh wave.
EN
The purpose of this paper is to study the thermoviscoelastic interactions in a homogeneous, isotropic semi-infinite solid under two-temperature theory with heat source. The Kelvin-Voigt model of linear viscoelasticity which describes the viscoelastic nature of the material is used. The bounding plane surface of the medium is subjected to a non-Gaussian laser pulse. The generalized thermoelasticity theory with dual phase lags model is used to solve this problem. Laplace transform technique is used to obtain the general solution for a suitable set of boundary conditions. Some comparisons have been shown in figures to estimate the effects of the phase lags, viscosity, temperature discrepancy, laser-pulse and the laser intensity parameters on all the studied fields. A comparison was also made with the results obtained in the case of one temperature thermoelasticity theory.
EN
The present investigation concerns thermomechanical interactions in a homogeneous isotropic thick plate in the light of the two-temperature thermoelasticity theory with dual phase lag due to a ring load. The upper and lower ends of the thick plate are traction free and subjected to an axisymmetric heat supply. The solution is obtained by using Laplace and Hankel transform techniques. The analytical expressions of displacement components, stresses, conductive temperature, temperature change and cubic dilatation are computed in a transformed domain. The numerical inversion technique has been applied to obtain the results in the physical domain. Numerically simulated results are depicted graphically. The effect of thermal phase-lags and two temperatures are shown on the various components. Some particular cases of the result are also deduced from the present investigation.
EN
The theory of two-temperature generalized thermoelasticity, based on the theory of Youssef is used to solve boundary value problems of one dimensional piezoelectric half-space with heating its boundary with different types of heating. The governing equations are solved in the Laplace transform domain by using state-space approach of the modern control theory. The general solution obtained is applied to a specific problems of a half-space subjected to three types of heating; the thermal shock type, the ramp type and the harmonic type. The inverse Laplace transforms are computed numerically using a method based on Fourier expansion techniques. The conductive temperature, the dynamical temperature, the stress and the strain distributions are shown graphically with some comparisons.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.