Purpose: Purpose of this paper is the theoretical formulation of elasto-dynamics behaviour of fully cracked concrete beams for two-degree of freedom (DOF) dynamical system. Such modelled system is demonstrated by a new class of two-DOF conservative, fully-nonlinear systems known as nonlinear homogeneous dynamical (NHD) systems. Design/methodology/approach: The theoretical formulation of Two-DOF dynamical system has been developed by using the fundamental concept of structural analysis. Further, the behaviour of such class of conservative dynamical system has been concluded by using MATLAB. Findings: Findings can be distinguished into two aspects. First, when subjected to service loads, reinforced concrete structures possess tension cracks. Due to load variation with time leads the breathing action (opening-closing-reopening) of existing cracks and the behaviour of such structures are nonlinearly-elastic. Second, such class of fully nonlinear dynamical system possess dependence of stiffness coefficients on nodal displacements. Research limitations/implications: The mechanism behind such class of fully nonlinear dynamical system is not yet fully explored. Practical implications: Practical implications are related to the structural response of fully cracked concrete beam to different earthquake excitation, especially to understand the response of such nonlinear homogeneous elasto-dynamical system with two-DOF concrete beam. Originality/value: Elasto-dynamics of fully cracked concrete beams.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.