A cyclonic-static micro-bubble flotation column (FCSMC) has been widely used in mineral separation. FCSMC includes countercurrent, cyclone and jet flow mineralization zones in a single column. In this study, the energy feature of the three different zones was compared. The turbulent flow was evaluated in terms of the turbulent kinetic energy (k) and the turbulent dissipation rate (ε). An appropriate computing model was determined by comparing the flow field value measured by PIV with the results of the Fluent numerical simulation. Jet flow separation exhibited the maximum k and ε values among the three columns, whereas counter-current separation displayed the minimum values. The high circulating volumetric flowrate means great energy input and turbulent intensity. The higher turbulent dissipation rate, the smaller the bubble is. The better performance of the FCSMC was mainly attributed to the multiple mineralization steps. The floatability of mineral particles gradually decreases with an increase in flotation time, the mineralization energy gradually increased to overcome the decrease in mineral floatability. By contrast, the countercurrent was beneficial for recovering the coarse particles, and the jet flow was beneficial for recovering the fine particles.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.