The analysis of subsonic stall flutter in turbomachinery blade cascade is carried out using a medium-fidelity reduced-order aeroelastic numerical model. The model is a type of field mesh-free approach and based on a hybrid boundary element method. The medium-fidelity flow solver is developed on the principle of viscous-inviscid two-way weak-coupling approach. The hybrid flow solver is employed to model separated flow and stall flutter in the 3D blade cascade at subsonic speed. The aerodynamic damping coefficient w.r.t. inter blade phase angle in traveling-wave mode is estimated along with other parameters. The same stability parameter is used to analyze the cascade flutter resistance regime. The estimated results are validated against experimental measurements as well as Navier-Stokes based high fidelity CFD model. The simulated results show good agreement with experimental data. Furthermore, the hybrid flow solver has managed to bring down the computational cost significantly as compared to mesh-based CFD models. Therefore, all the prime objectives of the research have been successfully achieved.
A mathematical formulation of the equations of fluid motion in turbomachinery cascades has been presented. A review of the calculation methods for solving these equations is given. These methods are based on an explicit time marching scheme with finite volume discretisation and upwind-biased technique for the inviscid fluxes calculations. The high order accuracy in space is realized by the MUSCL approximation. The discretisation methods and numerical grids are described. The calculations of viscous and inviscid flow models are performed. The model and results of the water steam flow analysis with homogeneous condensation are presented. The calculations are performed for complex problems of real blade configurations of turbomachinery.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.