Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  turbine nozzle
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The aim of this article is to present the results of theoretical studies regarding the use of variable geometry hot section of a miniature gas turbine. The variable geometry combustor and variable area nozzle concepts for GTM-120 miniature jet engine are presented in particular. Recent trends of propulsion system size reduction, low-emission combustion and improved fuel efficiency have been considered. A system of variable geometry combustor and variable area nozzle has been proposed as solution. The basic zero-dimensional analytical models for variable geometry combustor and variable area nozzle are developed. Chemkin based model shows significant NOX/CO emissions reduction and combustor outlet enthalpy increases with the use of variable geometry combustor chamber. The analytical model of the variable area nozzle has been proposed. It shows turbine effectiveness increase across its operating range by raising the compressor working line. As a result, noticeable turbine stage efficiency increase has been obtained. Finally, physical implications and future work plans regarding variable geometry hot section of miniature gas turbines are discussed.
EN
The paper presents a qualitative comparison of 2D and 3D computation of the flow field in a cone shaped turbine nozzle. The calculation yields a surface, S/sub 2/, for a given conical stream surface S/sub 1/. The S/sub 2/ stream surface represents the curvature of blading passages. This formulation is typical for the inverse problem. Based on a surface it is possible to design the shape of the blade. Results of 3D computation by means of FLUENT have been presented and compared with assumptions in the 2D model.
3
Content available remote Methods of design modifications of turboprop and turboshaft engines
EN
This paper presents shortly reasons of improving designs and de scribes general methods of making moditications of turboprop and turboshaft engines. The theoretical analysis of methods of modifying, concerning general changes of efficiency, flow, and rating. So, the influence of the following factors on engine performance was presented: change of quality unit functioning factors, increase of compression and flow rate by using a compressor zero-stage; changes of gas temperature keeping the gasgenerator rotational speed by adjusting the minimal throat area of turbine nozzle guide vanes; modelling; and changes of rotational speeds of operational ratings.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.