Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  tumor segmentation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Brain tumors can be difficult to diagnose, as they may have similar radiographic characteristics, and a thorough examination may take a considerable amount of time. To address these challenges, we propose an intelligent system for the automatic extraction and identification of brain tumors from 2D CE MRI images. Our approach comprises two stages. In the first stage, we use an encoder-decoder based U-net with residual network as the backbone to detect different types of brain tumors, including glioma, meningioma, and pituitary tumors. Our method achieved an accuracy of 99.60%, a sensitivity of 90.20%, a specificity of 99.80%, a dice similarity coefficient of 90.11%, and a precision of 90.50% for tumor extraction. In the second stage, we employ a YOLO2 (you only look once) based transfer learning approach to classify the extracted tumors, achieving a classification accuracy of 97%. Our proposed approach outperforms state-of-the-art methods found in the literature. The results demonstrate the potential of our method to aid in the diagnosis and treatment of brain tumors.
EN
Background: Breast cancer is a deadly disease responsible for statistical yearly global death. Identification of cancer tumors is quite tasking, as a result, concerted efforts are thus devoted. Clinicians have used ultrasounds as a diagnostic tool for breast cancer, though, poor image quality is a major limitation when segmenting breast ultrasound. To address this problem, we present a semantic segmentation method for breast ultrasound (BUS) images. Method: The BUS images were resized and then enhanced with the contrast limited adaptive histogram equalization method. Subsequently, the variant enhanced block was used to encode the preprocessed image. Finally, the concatenated convolutions produced the segmentation mask. Results: The proposed method was evaluated with two datasets. The datasets contain 264 and 830 BUS images respectively. Dice measure (DM), Jaccard measure, and Hausdroff distance were used to evaluate the methods. Results indicate that the proposed method achieves high DM with 89.73% for malignant and 89.62% for benign BUSs. Moreover, the results obtained validate the capacity of the proposed method to achieve higher DM in comparison with reported methods. Conclusion: The proposed algorithm provides a deep learning segmentation procedure that can segment tumors in BUS images effectively and efficiently.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.