Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  trzęsienie ziemi Chamoli
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The statistically point process model known as epidemic-type aftershock sequence (ETAS) model is employed for systematically investigating the seismic quiescence or seismic anomalies around the focal regions of large/strong earthquakes for NW Himalaya. For this propose, the model predicted the expected occurrence rates of earthquakes by estimating the model parameters from the earthquake occurrences times using maximum likelihood method, has been used. Then the exhibited relative quiescence due to decreasing occurrence rates from the modeled ones can be identified by inspecting the abnormally downward deviated plot from the extended cumulative curve of the Residual Point Process (RPP) events. Examination of such RPP events in the whole time interval exhibits significant 1.5 years and 2.0 years of relative seismic quiescence before the strong 1991 Uttarkashi (MW 6.8) and 1999 Chamoli (MW 6.6) earthquakes, respectively. Considering the optimally oriented planes of Uttarkashi earthquake, the Coulomb stress changes (ΔCFS) have been investigated to check the rate of seismicity around the focal region of Chamoli earthquake. It has been found that ΔCFS of Uttarkashi earthquake exhibits stress shadow in or near the source zone of Chamoli earthquake and eventually decreases seismicity rates due to seismic quiescence in the source zone. On the other hand, the detected quiescence and activation relative to the predicted seismicity rate are consistent with the obtained Coulomb stress to depict the associated anomalies being sensitive enough to detect a slight stress change in the study region. Henceforth, the increased or decreased seismic activity due to seismic activation or quiescence is found to be consistent with the patterns of the Coulomb’s stress changes calculated on the ruptured fault planes of Uttarkashi earthquake. Hence, this ETAS model based on statistical technique can thus be incorporated with other sensitive geophysical instruments for identifying seismically quiet period not only in the seismic gaps, but also in its neighborhoods along the Himalayan range for mitigating seismic hazards due to impending great earthquakes.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.