Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 38

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  trend analysis
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
Air pollution is one of the grave concerns of the modern era, claiming millions of lives and adversely impacting the economy. Aerosols have been observed to play a significant role in negatively influencing climatological variables and human health in given areas. The current study aimed to study the trend of aerosols and particulates on daily, monthly, seasonal, and annual levels using a 20-year (2002–2021) daily mean aerosol optical depth (AOD) product released by moderate resolution imaging spectrometer (MODIS) sensors for the Hyderabad district in India. The results of the daily mean analysis revealed a rising trend in the number of days with severe AOD (>1), whereas examinations of the seasonal and monthly mean data from 2017 through 2022 showed that peak AOD values alternated between the summer, autumn, and winter seasons over the years. Trend analysis using Mann–Kendall, modified Mann–Kendall, and innovative trend analysis (ITA) tests revealed that AOD increased significantly from 2002 through 2021 (p < 0.05; Z > 0). Furthermore, correlation analysis was performed to check for correlations between AOD levels and certain meteorological factors for the Charminar and Secunderabad regions; it was noticed that temperature had a weak positive correlation with AOD (p < 0.05; r = 0.283 [Secunderabad] – p < 0.05; r = 0.301 [Charminar]), whereas relative humidity developed a very weak negative correlation with AOD (p < 0.05; r = −0.079 [Secunderabad] – p < 0.05; r = −0.109 [Charminar]).
EN
Mercury and its compounds are among the most dangerous and toxic substances in the environment. As part of the study, several exploratory analyses and statistical tests were conducted to demonstrate how low and stable mercury content is in municipal waste. A statistical analysis of the mercury content in waste (waste codes 19 12 12 and 20 03 01) was carried out using advanced IT tools. Based on 32 results for each waste, the maximum mercury concentration was 0.062 mg/kg dry weight (EWC code 19 12 12) and 0.052 mg/kg dry weight (EWC code 20 03 01). The analysis, data inference, and modeling were performed according to the CRISP-dm methodology. The results obtained were compared with the maximum allowable mercury concentrations for agricultural soils (2 mg/kg dry weight) and the provisions of the Minamata Convention (1 mg/kg). The average, median, and maximum observed mercury concentrations in waste are significantly lower than the assumed levels of 2 mg/kg (permissible concentrations for II-1 soils) and 1 mg/kg (Minamata Convention). The stability of mercury content in waste was examined. Descriptive statistics, statistical tests, and regression modeling were used. The tests and analyses performed showed an insignificant variation in the mercury content of the wastes with codes 19 12 12 and 20 03 01. No trend or seasonality was observed. The analyses and tests performed confirmed that the data are stable, and the values are low.
EN
This study investigates possible rainfall and drought trends using data from 38 rainfall stations in the Medjerda basin (northeast of Algeria) over 54 years (1965–2018). Drought-related data were calculated with the Standardized precipitation index (SPI). The Mann–Kendall test was used to find positive or negative precipitation trends. The magnitude of these trends was calculated using Sen’s slope method. According to the analysis, a decrease during the spring precipitation season was observed. Furthermore, the authors found the maximum increasing (decreasing) precipitation magnitude to be 2.14 mm/season (− 4.41 mm/season) in winter (spring). In addition, the magnitude of the precipitation trend per year ranged from − 6.26 to 2.54 mm/year, with an average reduction of 39% for the entire basin. From the outcomes of drought trend analysis, it can be inferred that for a short-time scale, the innovative trend analysis method exhibited a negative trend for the minimum and maximum SPI values. Drought severity was found to have increased during severe and extreme wet episodes, directly affecting Algeria’s frequently drought-affected agricultural regions, such as the Merdja plain and the irrigated perimeters of Sedrata and Zouabi. Considering the long-time scales, an increase was detected in drought severity and a decline during severe and extreme wet episodes. These findings show that the southeastern and central parts of the Medjerda basin’s long-term water resources have been severely affected, which negatively impacts the newly-constructed Ouldjet Mellegue dam in Tébessa province.
EN
The present paper analyzes long term (1960–2021) of the minimum, maximum, and average temperatures in Central Anatolia Region, corresponding middle part of Turkey, aiming to reveal how strongly the temperatures increase, which is a precondition for sustainable development in this region. For this purpose, temporal trends, variability, and anomalies in temperatures of 27 meteorological stations were detected using Mann–Kendall test (M-K), coefficient of variations, and Gaussian filter, respectively. Results show a statistically significant increasing trend in annual average temperatures at approximately 92% of all stations. This shows that the increasing trend in spring and summer temperatures plays an important role in amplifying the warming trend of annual temperatures. The coefficients of variation in annual average, maximum, and seasonal temperatures increase from west to east. Significant strong increasing trend (at 0.001 level) in winter temperatures was detected only at Seydişehir. While positive anomalies have been observed in the northwestern part of the region since 2007, they have been observed in other parts since 1995–1996. Since the strong increase in summer temperatures in Aksaray, Cihanbeyli, and Seydişehir is also observed in autumn, warm conditions continue until the end of autumn in these settlements. For this reason, four seasons do not prominently occur for all three settlements. Generally, annual maximum and minimum temperatures illustrate statistically significant increasing trends for all stations and 74% of all stations, respectively. According to the M-K test results, climate of the region has warmed on average by 1.44 °C in last 31 years.
5
Content available remote Investigating recent changes in the wind speed trends over Turkey
EN
The wind has considerable effects on the ecosystem and evaporation as an essential parameter of the hydrological cycle. Therefore, determining historical changes in the wind will help to specify these effect levels. Although there are studies on the determination of wind speed trends by several researchers in Turkey, it is necessary to investigate the changes in the trend structure with recent data. For this purpose, the trends of monthly surface wind speed data from 1970 to 2021 belonging to 199 meteorology observation stations in Turkey are determined in the present study. The nonparametric Mann–Kendall test and Sen’s slope method are used in the trend analysis accounting for serial correlation effects. The trend analysis results of wind speed data are evaluated temporally and spatially for seven geographical regions within Turkey. As a result of this study, a prominent part of stations in Turkey shows a decrease or significant decrease trend. In addition, as a result of comparisons made with previous studies, it is determined that the trend structure of the wind speed in the country has changed. In the annual and monthly wind speeds, it is observed that the number of stations has a "significant trend" decreased considerably.
EN
Assessment of spatiotemporal dynamics of meteorological variables and their forecast is essential in the context of climate change. Such analysis can help suggest possible solutions for flora and fauna in protected areas and adaptation strategies to make forests and communities more resilient. The present study attempts to analyze climate variability, trend and forecast of temperature and rainfall in the Valmiki Tiger Reserve, India. We utilized rainfall and temperature gridded data obtained from the Indian Meteorological Department during 1981–2020. The Mann–Kendall test and Sen’s slope estimator were employed to examine the time series trend and magnitude of change at the annual, monthly and seasonal levels. Random forest machine learning algorithm was used to estimate seasonal prediction and forecasting of rainfall and temperature trend for the next ten years (2021–2030). The predictive capacity of the model was evaluated by statistical performance assessors of coefficient of correlation, mean absolute error, mean absolute percentage error and root mean squared error. The findings revealed a significant decreasing trend in rainfall and an increasing trend in temperature. However, a declining trend for maximum temperature has been observed for winter and post-monsoon seasons. The results of seasonal forecasting exhibited a considerable decrease in rainfall and temperature across the Reserve during all the seasons. However, the temperature will increase during the summer season. The random forest machine learning algorithm has shown its effectiveness in forecasting the temperature and rainfall variables. The findings suggest that these approaches may be used at various spatial scales in different geographical locations.
EN
The Danube River plays significant role not only for preserving natural ecosystems. The aim of this paper is to examine the Middle Danube water quality in the part flowing through Serbia in section Bezdan - Banatska Palanka. Water quality data were examined for seven control points for period 2004-2018, for seven parameters: suspended solids (SS), dissolved oxygen (DO), electrical conductivity (EC), nitrates (NO3–-N), total phosphorus (Ptot), biochemical oxygen demand (BOD5) and chemical oxygen demand (COD). Data analyses included the application of ANOVA, linear regression analysis and Mann-Kendall trend test. The Mann-Kendall tests in most (32/49) cases, i.e. in 65 %, confirmed the non-existence of a significant trend. Significant downward trends were confirmed in 17 cases. Water quality improvement was confirmed at following control points: Bezdan for NO3–-N, Ptot and BOD5; Bogojevo for NO3–-N, Ptot, COD and BOD5; Novi Sad for Ptot, BOD5 and COD; Slankamen for BOD5 and COD; Smederevo for NO3–-N and COD; Banatska Palanka for NO3–-N. Slight deterioration of water quality was confirmed only in two cases, at the Zemun and Smederevo where DO was decreasing. Water quality for the examined period was stable and can be characterised as excellent and/or very good (class I or class II). Results emphasise fact that water quality trends monitoring reveals river sectors where the process of water quality degradation is ongoing. Timely detected critical river sectors can draw the attention of decision-makers, who can improve the existing legislation that would lead to water quality improvement.
EN
This study establishes the improvements in the sixth phase of the Coupled Model Intercomparison Project (CMIP6) simulations as compared to its previous version, CMIP5. First, the historical simulations are compared with the reanalysis products from the 5th generation European Centre for Medium-Range Weather Forecasts (ERA5). Quality improvement in CMIP6 is assured through its correspondence with ERA5 in terms of mean, standard deviation and mean bias. Global fields of three hydrometeorological variables, i.e. temperature, precipitation and soil moisture, are considered from multiple General Circulation Models. Among the three variables, maximum improvement is noticed in case of soil moisture followed by precipitation, especially in the tropical belt. In case of temperature, the mean bias has reduced by±3 °C across the parts of North America, Africa, and South Asia. Better reliance on the CMIP6 motivates for a trend analysis to peek into the future. The results indicate a significant increasing trend for precipitation in the temperate, polar and sub-polar regions, whereas a significant increase in temperature is noticed almost all across the world with highest slope in the polar and sub-polar regions. Furthermore, soil moisture shows a significant trend that can be grouped continent-wise, e.g. Africa, Central and South Asia exhibit an increasing trend, whereas North and Central America and Northern parts of South America exhibit an overall decreasing trend. Apart from underlining the better reliance on CMIP6, the findings of this study will also be useful across different parts of the world for many climate related studies using CMIP6.
EN
Air temperature is one of the most important parameters that contribute to weather variability over time, being influenced by the flow of solar radiation, the general circulation of currents in the atmosphere relief. The present paper analyzes the minimum, maximum, and mean temperatures in Dobrogea, on the Romanian Black Sea coastal area, aiming to illustrate their evolution, which is a precondition for sustainable development in this region, from the perspective of regional and global climate changes. The weather stations included in this study are Constanta, Mangalia, Gura Portitei, Sfantu Gheorghe, and Sulina. The Pettit Test and the Standard Normal Homogeneity Test were used to determine changes in the evolution of the air temperature. For the period 1990–2020, the analysis of the change points, with a 95% confidence level, shows a particularly interesting situation supporting the general evolution of air temperature at global level. Nonparametric tests including linear regression, Mann–Kendall, and Sen's slope tests were used to analyze trends for monthly, seasonal, and annual series. Results showed an increasing trend in the annual minimum, maximum, and mean temperatures in all five weather stations.
EN
Population growth and urbanization lead to urban heat island (UHI) phenomenon. Urbanization is occurring at a very high rate in the Surat city. Thus, the study of the urbanization impact on the UHI effect for the Surat city is performed in the present study through studying the impact of land use land cover on the land surface temperature of urban and sub-urban areas of the Surat city over the period May 1998 to May 2018. Also, these effects are compared with that of a nearby sub urban taluka Kamrej, which showed that temperature in urban areas is more than that of the sub-urban areas. Aforesaid facts clearly showing the existence of the UHI effect in the Surat city. As urbanization contributes to climate change, its effects on rainfall are studied by comparing rainfall trends of urban and sub-urban areas of the Surat city and nearby sub-urban area Kamrej. Trend analysis showed that trend magnitude values are higher for the urban areas than sub-urban areas, indicating that UHI effect increases rainfall in urban areas. Hotspot analysis is also performed for the Surat city corresponding to May 2018 to recognize hot spots and cold spots. As the Surat city is highly urbanized, thus, hotspots are more than cold spots.
EN
The drought ranked first in terms the natural hazard characteristics and impacts followed by tropical cyclones, regional floods, earthquakes, and volcanoes. Drought monitoring is an important aspect of drought risk management and the assessment of drought is usually done through using various drought indices. The western region in Algeria is the most affected by the drought since the middle of the 70s.The current research focuses on the analysis and comparison of four meteorological drought indices (standardized precipitation index – SPI, percent of normal index – PN, decile index – DI, and rainfall anomaly index – RAI) in the Tafna basin for different time scales (annual, seasonal, and monthly) during 1979–2011. The results showed that the SPI and DI have similar frequencies for dry and wet categories. The RAI and PN were able to detect more drought categories. Meanwhile, all indices have strong positive correlations between each other, especially with Spearman correlation tests (0.99; 1.0), the meteorological drought indices almost showed consistent and similar results in the study area. It was determined in 1982 as the driest year and 2008 as the wettest year in the period of the study. The analysis of the trend was based on the test of Mann–Kendall (MK), a positive trend of the indices were detected on a monthly scale, this increasing of indices trend represent the increasing of the wet categories which explains the increasing trend of the rainfall in the last 2000s. These results overview of the understanding of drought trends in the region is crucial for making strategies and assist in decision making for water resources management and reducing vulnerability to drought.
12
EN
This paper assessed the trend of productivity of the existing six Nigerian ports. Secondary data was extracted from National Bureau of Statistics (NBS) Annual Reports, Nigeria Port Authority (NPA) Annual Reports, and Central Bank of Nigeria (CBN) Annual reports. Using the Data Envelopment Analysis technique, it was discovered that Calabar Port had been under-utilized towards the achievement of the required results. On the contrary, Rivers Port requires technical touches in her operations. As a liquid bulk port, the time of loading and discharging of commodities are often more than any other type of port and the turnaround time at this port are often more. Scale optimization is also required in Rivers Port. Inferentially, Lagos Port has been operating on optimal scale size but fluctuating managerial efficiency was experienced in the operation years. As a matter of findings, Tin Can Island has a similar trend to that of Onne Port with low productivities in the pre-concession period which improved consistently in the post-concession year of 2010 till the year 2015. It was also observed that Tin Can Island Port operated on under-utilization of inputs resources in the pre-concession periods till the post-concession year 2010. This reflects the element of wastefulness concerning both inputs and outputs quantities. Delta Port experienced fluctuating scale and technical efficiency trends in both pre and post concession years. Hence, it is observed that productivities' trends vary among the concessioned Nigerian Ports. These could be as a result of the influence of varied exogenous and endogenous factors on individual Port.
EN
Throughout the geological history of the earth, there have been many climate changes due to natural and external factors. In the past, the changes in climate were caused by natural causes, and today it is primarily caused by human activities. Besides being diferent climate types, Turkey is among countries that will be afected by climate change induced by global warming. Climate changes in the regions will be afected diferently and degrees due to the country’s surroundings by seas, fragmented topography and orographic features. Trend analysis methods are used in many areas such as on various engi neering, agriculture, environmental and water resources, especially in climate change impact studies resulting from global warming. When data are analyzed with classical trend analysis methods, forward-looking predictions are generally made as low, medium, high, decreasing and increasing. However, risk classes showing changes between available data sets are not known. Innovative Trend Pivot Analysis Method (ITPAM) determines risk classes by establishing a relationship between data. Furthermore, in this method, increasing and decreasing trend regions are separated into fve classes more clearly than classical/traditional trend methods. In this study, Susurluk Basin’s total monthly precipitation data (2006–2017) were analyzed by using ITPAM which the newest trend method. When arithmetic mean analysis results are examined, a signifcant change is observed between frst data set and second data set at two stations (Bandirma and Uludag). When examined at other stations, it is observed that at least one month of almost every station is in 1st degree risk group. When standard deviation analysis results of each station are examined, a signifcant change is observed between frst data set and second data set at many stations. Because while trend class of a point in developed IPTA graph is the medium degree, this point is in 1st risk class in the risk graph.
14
Content available remote Extreme precipitation indices trend assessment over Thrace region, Turkey
EN
The frequency and the severity of extreme weather events are increasing globally and will continue to do so in the coming decades as a consequence of our changing climate. Understanding the characteristics of these events is crucial due to their signifcant negative impacts on social, physical and economic environments. In this study, 14 extreme rainfall indices are determined and examined in terms of trends and statistical characteristics for the four meteorological stations located in the Thrace region of Turkey, namely Edirne, Tekirdag, Kirklareli and Sariyer (Istanbul). The results indicate that annual total precipitation has an increasing trend for the Kirklareli and Sariyer stations (z=1.730 and z=2.127) and a decreasing trend for the Edirne and Tekirdag stations (z=− 0.368 and z=− 0.401). However, the precipitation intensity indices (SDII) of all stations show increasing trends that are statistically signifcant for the Edirne and Kirklareli stations. The Kirklareli station tends to have more days with heavy, very heavy and extremely heavy rainfall events (z=2.241, z=2.076 and z=1.684, respectively). It is also anticipated that maximum amount of rainfalls in daily and consecutive fve- and ten-day time scales will probably increase at all stations. Moreover, rainfall from very wet days and extremely wet days and fraction of total wet day rainfall that comes from very wet days and extremely wet days indices also show increasing trend tendencies for all stations. The remarkable point is the decreasing total precipitation trend at the Edirne and Tekirdag stations, contrary to the Kirklareli and Sariyer stations, which indicates that the annual total precipitation does not necessarily depend on extreme precipitation for the analyzed period.
EN
In recent years, gridded precipitation products have been widely used in hydrology studies and other felds of water sciences. This study evaluated the potential of several gridded precipitation products, including GPCC, TRMM, CRU, ERA-Interim, and ERA5, in trend analysis of precipitation depth and the number of rainy days in various regions of Iran. Moreover, the observational precipitation data of the daily time series were collected from 68 Iranian synoptic stations. The Mann–Kendall test was conducted to determine gridded and observed precipitation trends in the period of 1997 to 2017. The probability of detection (POD) and false alarm ratio (FAR) indices were utilized to compare gridded and observed precipitation trends. Results showed that the best consistency (POD: 52% ~ 80%, FAR: 60% ~ 88%) was observed between the observed trends of the number of rainy days and those obtained by TRMM product over different regions of Iran. Moreover, ERA-Interim ofered a better performance (POD: 50% ~ 100%, FAR: 58% ~ 72%) in the trend analysis of precipitation depth in Iran. The consistency between observational and gridded precipitation trends has never been analyzed in Iran at this level; therefore, this is considered a unique analysis. Besides, the generated maps of precipitation products’ performance provide a comprehensive view of better water resources management over different regions of Iran.
EN
Studies associated with climate change and variability are of great importance at both the global and local scale in the global climate crisis. In this study, change-point detection and trend analysis were carried out on mean, maximum, minimum air temperatures and total precipitation based on monthly, seasonal and annual scale in Bartın province located in the western Black Sea Region of Turkey. For this aim, 4-different homogeneity tests (von Neumann test, Pettitt test, Buishand range test and standard normal homogeneity test) for changepoint detection, Modified Mann–Kendall test and Şen’s innovative trend test for trend analysis, and Sen’s slope test for the magnitude estimation of trends were used. According to the test results, the summer temperatures in particular show increasing trends at the 0.001 significance level. Mean maximum temperature in August, mean minimum temperature in June and August, and mean temperature in July and August are in increasing trend at the 0.001 significance level. Over a 51 year period (1965–2015) in Bartın province, the highest rate of change per decade in air temperatures is in August (0.55°C for Tmax, 0.46°C for Tmin and 0.43°C for Tmean) based on Sen’s slope. However, the study showed that apart from October precipitation, there is no significant trend in monthly, seasonal and annual precipitation in Bartın. Increasing trends in mentioned climate variables are also visually very clear and strong in Şen’s innovative trend method, and they comply with the statistical results. As a result, the study revealed some evidence that temperatures will increase in the future in Bartın and its environs.
17
Content available remote Seasonality shift and streamfow fow variability trends in central India
EN
A better understanding of intra/inter-annual streamfow variability and trends enables more efective water resources planning and management for current and future needs. This paper investigates the variability and trends of streamfow data from fve stations (i.e. Ashti, Chindnar, Pathgudem, Polavaram, and Tekra) in Godavari river basin, India. The streamfow data were obtained from the Indian Central Water Commission and cover more than 30 years of mean daily records (i.e. 1972–2011). The streamfow data were statistically assessed using Gamma, Generalised Extreme Value and Normal distributions to under stand the probability distribution features of data at inter-annual time-scale. Quantifable changes in observed streamfow data were identifed by Sen’s slope method. Two other nonparametric, Mann–Kendall and Innovative Trend Analysis methods were also applied to validate fndings from Sen’s slope trend analysis. The mean fow discharge for each month (i.e. January to December), seasonal variation (i.e. Spring, Summer, Autumn, and Winter) as well as an annual mean, annual maximum and minimum fows were analysed for each station. The results show that three stations (i.e. Ashti, Tekra, and Polavaram) demonstrate an increasing trend, notably during Winter and Spring. In contrast, two other stations (i.e. Pathgudem, Chindnar) revealed a decreasing trend almost at all seasons. A signifcant decreasing trend was observed at all station over Summer and Autumn seasons. Notably, all stations showed a decreasing trend in maximum fows; remarkably, Tekra station revealed the highest decreasing magnitude. Signifcant decrease in minimum fows was observed in two stations only, Chindnar and Pathgudem. Findings resulted from this study might be useful for water managers and decision-makers to propose more sustainable water management recommendations and practices.
EN
From the macroeconomic point of view, the stock index is the best indicator of the behavior of the stock market. Stock indices fulfill different functions. One of their most important functions is to observe developments of the stock market situation. Therefore, it is crucial to describe the long-term development of indices and also to find moments of abrupt changes. Another interesting aspect is to find those indices that have evolved in a similar way over time. In this article, using trend analysis, we will uncover the global evolution of selected indices. After evaluating the global trend in the series we compare the results with local trend analysis. Other goal is to detect the moments in which this development suddenly changed using the change-point analysis. By means of cluster analysis, we find those indices that are most similar in long-term development. In each analysis, we select the most appropriate methods and compare their results.
EN
The paper describes a system for monitoring and diagnosing a gantry. The main goal of the system is to acquire, visualize and monitor vibration levels of the gantry crucial elements. The system is also equipped with a computing and analytical part which enables predictive maintenance related to the vibration level assessment. The system architecture can be used in other applications too, i.e. those which require a wireless network of vibration sensors to carry out diagnostic tasks.
PL
W artykule przedstawiono system monitorowania i diagnostyki suwnicy bramowej. Głównym zadaniem systemu jest akwizycja, wizualizacja i monitorowanie poziomu drgań newralgicznych elementów suwnicy. System wyposażony jest również w część obliczeniowoanalityczną, umożliwiającą realizację zadań predykcyjnego utrzymania ruchu (ang. predictive maintenance) związanych z oceną poziomu drgań. Architektura systemu umożliwia wykorzystanie go również do innych zastosowań, w których dla realizacji zadania diagnostyki wymagana jest bezprzewodowa sieć czujników drgań.
EN
Until present, bio-optical characteristics and their variations in the eastern Mediterranean and Black Sea have rarely been studied. In order to characterize the basic features of bio-optical variables found in the seas surrounding Turkey, remotely sensed data sets covering the period between September 1997 and March 2017 were studied for the purpose of this research. Chlorophyll-a concentration (CHL), absorption coefficient by colored dissolved organic matter (CDOM) and particulate backscattering coefficient (BBP) were both evaluated to describe their recent linear and non-linear inter-annual patterns in the sub regions of the northern Levantine Sea (LS), the eastern Aegean Sea (AS), the Marmara Sea (MS) and the southern Black Sea (BS). The results determined a highly significant and decreasing trend of CHL in the Black Sea, whilst most other regions from the seas around Turkey displayed non-significant trends. The analysis indicated that the seas around Turkey can be clustered into two regions based on their bio-optical properties; one being the Black Sea and Marmara Sea, and the second cluster being the Aegean Sea and Levantine Sea.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.