In this work the topic of applying clustering as a knowledge extraction method from real-world data is discussed. The authors propose hierarchical clustering method and visualization technique for knowledge base representation in the context of medical knowledge bases for which data mining techniques are successfully employed and may resolve different problems. What is more, the authors analyze the impact of different clustering parameters on the result of searching through such a structure. Particular attention was also given to the problem of cluster visualization. Authors review selected, two-dimensional approaches, stating their advantages and drawbacks in the context of representing complex cluster structures.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.