Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  transverse distribution of loads
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Static analyses of bridge structures are currently performed using the finite element method (FEM). Depending on the geometry of the structure and the technically required accuracy of calculations, different levels of discretization of these structures are used in their design. In the design process, beam grillage models (denoted e1, p2), shell models (denoted e2, p2) or shell-beam models (denoted e1+ e2, p3) are often used. Solid models (denoted e3+ p3) are mostly used in advanced analyses, having frequently a scientific character. It is shown that there is an impact of the applied types of the numerical model (i.e., degree of complexity, degree of discretization, accuracy of the model) of the road bridge on the calculated values of bending moments and displacements, which indirectly affects the global safety coefficient of the designed bridge structure. The main purpose of the calculations is to examine the discrepancies of analyzed internal forces and displacements depending of the type of numerical model used. The calculated values are referred to the results taken from the field tests of the existing bridge denoted MS 03, which is a continuous beam structure with the three spans 37:50 + 46:75 + 37:50 m made of prestressed concrete and with variable beam depth. On the basis of numerical simulations, the paper provides author’s recommendations for computer modeling of similar bridges.
PL
Analizy statyczne konstrukcji mostowych są obecnie wykonywane metodą elementów skończonych (MES). W zależności od geometrii konstrukcji i wymaganej technicznie dokładności obliczeń, w projektowaniu i analizie statycznej obiektów mostowych stosuje się różne poziomy dyskretyzacji tych struktur. W projektowaniu często stosowane bywają modele rusztowe (klasy e1, p2), powłokowo-belkowe (klasy e1 + e2, p3) ewentualnie powłokowe (klasy e2, p2). Modele bryłowe stosuje się przeważnie w zaawansowanych analizach, także o charakterze naukowym. W pracy wykazano, że istnieje wpływ przyjętej klasy modelu numerycznego wiaduktu drogowego (stopień skomplikowania, dyskretyzacji, dokładność modelu) na otrzymywane wartości momentów zginających i przemieszczeń oraz ich różnice, co pośrednio wpływa na współczynnik globalnej rezerwy bezpieczeństwa projektowanej konstrukcji mostowej. Głównym celem obliczeń było zbadanie rozbieżności oszacowanych wielkości statycznych między modelami o różnej dokładności, a przeprowadzone symulacje komputerowe mają charakter eksperymentu numerycznego. Wykonane obliczenia nawiązywały do wyników uzyskanych podczas badan odbiorczych obiektu pod próbnym obciążeniem. Przedmiotem analiz porównawczych był most MS-03, który jest konstrukcją płytowo-belkową z betonu sprężonego o schemacie belki ciągłej trójprzęsłowej o rozpiętościach przęseł37,50 + 48,75 + 37,50 m i zmiennej wysokości belek. W pracy wykonano trzy modele obiektu w środowisku MES SOFiSTiK: rusztowy w dwóch wariantach (R-1 i R-2 klasy e1, p2) i mieszany powłokowo-belkowy (PB, klasy e1+e2, p2). Obliczenia porównawcze badanego obiektu przeprowadzono w celu określenia wpływu klasy modelu numerycznego (rusztowy, mieszany belkowo-powłokowy) na rozdział poprzeczny obciążenia użytego podczas badan odbiorczych (część obciążenia przypadająca na pojedynczy dźwigar) i wygenerowane wielkości statyczne (momenty zginające, przemieszczenia) oraz oszacowania wpływu sposobu modelowania odcinka utwierdzenia płyty pomostowej w środnikach dźwigarów, pełniącej rolę elementu stężającego belki nośne na rozdział poprzeczny obciążenia. Na podstawie przeprowadzonych obliczeń porównawczych mostu, za pomocą trzech modeli numerycznych (rusztowych R-1 i R-2 oraz powłokowo-belkowego PB) należy stwierdzić, że wpływ klasy modelu MES (stopnia dyskretyzacji) jest średnio znaczący, tj. rozbieżności oszacowanych wielkości statycznych zawierają się w przedziale 15-25%. W przypadku momentów zginających My od obciążeń ruchomych przy jednostronnym przeciążeniu przęsła, z uwagi na rozdział poprzeczny obciążenia, rozbieżności wyników między odwzorowaniami osiągają maksymalnie 19,1%. Zastosowanie modeli o różnym stopniu dyskretyzacji powoduje, że różnice wyników od obciążeń ruchomych ustawionych niesymetrycznie w przekroju przęsła przekraczaj ą 15%, a więc wartość zwyczajowo uznawaną w obliczeniach inżynierskich za akceptowaną granicę błędu. W przypadku odwzorowań rusztowych R-1 i R-2 efekt uwzględnienia lub nieuwzględnienia szerokości środników belek trapezowych (tzw. odcinek utwierdzenia płyty pomostu) na efektywną rozpiętość płyty pomostu oraz rozdział poprzeczny obciążenia jednostronnego (niesymetrycznego) wiąże się z rozbieżnościami momentów zginających w zakresie 7,6-10,9%. Różnice wartości My od obciążeń ruchomych nie przekraczaj ą 15%, co oznacza, że wpływ sposobu modelowania szerokości środników (lub pominięcie odwzorowania ich szerokości) jest w omawianej konstrukcji mało znaczący. Wpływ tego aspektu modelowania przęseł o szerokich środnikach na ostateczne wyniki (np. obwiednie Myº będzie jeszcze mniejszy po uwzględnieniu pozostałych obciążeń obiektu. Na podstawie przeprowadzonych symulacji numerycznych w pracy podano rekomendacje autorskie dotyczące komputerowego modelowania podobnych obiektów.
2
Content available remote Parameters of load transverse distribution across bridges
PL
W pracy analizuje się dwa, klasyczne modele przęseł mostowych w postaci rusztu płaskiego i płyty ortotropowej, w zakresie przydatności parametrów charakterystycznych tych modeli do tworzenia rozdziału poprzecznego obciążenia. W wyniku analizy wykazano, że model płyty ortotropowej, uzyskany w rozwiązaniach Guyon-Massonnet oraz Cusens-Puma jest ogólniejszy niż model rusztu płaskiego w ujęciu Leonhardta. Z porównania parametrów charakterystycznych obydwu modeli, czyli płyty ortotropowej i rusztu wyprowadzono ogólną funkcję parametru charakterystycznegorusztu stosowanego w metodzie Leonhardta. W jej postaci uwzględniono dodatkowo liczbę dźwigarów głównych i poprzecznic przęsłowych. Funkcję tą wykorzystano do weryfikacji założeń najprostszego modelu rusztu nazywanego „metodą sztywnej poprzecznicy" i wykazano znaczne odchylenia od dotychczasowych wyników. Przykłady analiz porównawczych, podane w pracy ilustrują zakresy zastosowań parametrów charakterystycznych modeli mostów. W podsumowaniu rozpatrzono możliość wykorzystania współcześnie tworzonych powierzchni wpływu momentów zginających do rozdziału poprzecznego obciążenia.
EN
The paper concerns analysis of two classic bridge span models i.e. flat grillage and orthotropic plate in order to determine usefulness of characteristic parameters of this models for creation of load transverse distribution. The results of analysis shows that the orthotropic plate model obtained in Guyon-Massonnet and Cusens-Puma solutions is more general than the flat grillage model developed by Leonhardt. Through the comparison of characteristic parameters of both models, i.e. the orthotropic plate and the grillage, a general function of grillage characteristic parameter used in the Leonhardt method is derived. Additionally, the number ofmain girders and cross-beams is included in the formula. The function is used for verifying the assumptions of the simplest grillage model (Courbon's Theory). Significant deviations from existing results are shown. The examples of comparative analyses given in the paper show the range of applications of the characteristic parameters of bridge models. In the conclusions the possibilityofusing bending moments influence surfaces to the transverse load distribution is presented.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.