Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  transmitacja macierzy
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Rozkład strukturalny macierzy transmitancji układu singularnego
PL
Wprowadzono pojęcie pary cyklicznej (E,A) oraz pojęcie macierzy normalnej dla singularnych (detE=0) układów dyskretnych opisanych równaniami Ex(i+I)=Ax(i)+Bu(i), y(i)=Cx(i)+Du(i), E.A ∈ R(n,xn), B ∈R(n,xm), C ∈ R(p,xn), D ∈ R(p,xm). Wykazano, że: 1)Macierz odwrotna [E(z)-A]-I jest normalna wtedy i tylko wtedy, gdy para (E,A) jest cykliczna; 2) Macierz transmitancji T(z)=C[E(z)-A]-I B+D=P(z)/d(z) jest normalna wtedy i tylko wtedy, gdy wielomian d(z) jest równy wielomianowi McMillana tej macierzy; 3) Macierz transmitancji T(z) jest macierzą normalną wtedy i tylko wtedy, gdy istnieje jej rozkład strukturalny, czyli daje się przedstawić w postaci T(z)=[Q(z)R(z)/d(z)]+G(z), gdzie Q(z) jest wielomianową macierzą kolumnową, R(z) -wielomianową macierzą wierszową, a G(z) macierzą wielomianową. Podano procedurę wyznaczania rozkładu strukturalnego macierzy T(z), którą zilustrowano przykładem numerycznym.
EN
The notion of a cyclic pair of matrices (E,A) and of the normal matrix are introduced for singular (detE=0) discrete-time systems described by Ex(i+I)=Ax(i)+Bu(i), yi=Cx(i)+Du(i), E,A ∈ R(n,xn), B ∈ R(n,xm), C ∈ R(p,xn), D ∈ R(p,xm). It is shown that: 1) The inverse matrix [Ez- A]I is normal if and only if the pair (E,A) is cyclic; 2) The transfer matrix T(z)=C[Ez- A]-I B+D=P(z)/d(z) is normal if and only if the polynomial d(z) is equal to the McMillan polynomial of T(z), 3) The transfer matrix T(z) is normal if and only if there exists its structure decomposition, i.e. it can be written in the form T(z)=[Q(z)R(z)/d(z)]+G(z), where Q(z) is a column polynomial matrix, R(z) is a row polynomial matrix and G(z) is a polynomial matrix. A procedure for computation of the structure decomposition of T(z) is given and illustrated by a numerical example.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.