Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  translocation factor
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Lead (Pb) is a heavy metal often discovered to be polluting the water areas. One of the efforts made to overcome the heavy metal pollution in estuaries was phytoremediation technique using mangroves. The Wonorejo River was one of the rivers that received industrial waste loads. There were various types of mangrove plant species at the estuary of the Wonorejo River. The location of this research was divided into 3 monitoring stations (A, B, C). Station A was directly adjacent to the estuary, as location C was farther away and very close to the sea. However, station B was located between location A and B. This study aimed to determine the ability of mangrove in remediating and illustrating the distribution of Pb, at the Wonorejo River estuary. Moreover, it also aimed to determine the values of Bioconcentration (BCF) and Translocation (TF) Factors in the ability of Avicennia alba, Avicennia marina, Sonneratia caseolaris, Avicennia lanata, and Rhizophora stylosa to accumulate Pb. The samples were the roots, stems, and leaves of mangroves, with the water and sediment at the Wonorejo estuary, as all solid materials were also extracted. The samples were analyzed for heavy metal concentration, using an atomic absorption spectrophotometer (AAS). The results showed that the highest average Pb concentration for waters and sediments was obtained at station C and A, with values of 0.069 mg/L and 4.22 mg/kg, respectively. It was further observed that the Pb concentration in the water was lower than in sediment, indicating that the metal was accumulated in the sediments. On the basis of the BCF value, the most effective mangrove involved in the accumulation of Pb was A. alba. The highest values of TF for both root to stems and to leaves in the accumulation of Pb was also discovered in A. lanata and A. alba mangroves, respectively. On the basis of the Pb distribution mapping, the concentration of the metal was shown to increased, as the research location moved further away from the estuary. Conclusively, each type of mangrove had different ability to accumulate and translocate Pb in its body, with the potential of using those plants as phytoremediaton agents for the metal.
EN
Contamination of soil and water by various heavy metals such as Cd, Pb, Ni, Cu, and Fe is increasing day by day as a result of different activities, such as industrialization and urbanization. Lead (Pb), Cadmium (Cd), and Nickel (Ni) are examples of potential heavy metals that are neither essential elements nor have any role in the process of cell metabolism, but are easily absorbed and accumulated in different parts of a plant and living beings. This study was to investigate the translocation and bioaccumulation of heavy metals such as Pb, Ni, Cd, Cu, and Fe in Urtica dionica L and soil samples from 2 sites (uncontaminated – Koliq and contaminated – Kishnica in the Republic of Kosovo). The results revealed that in the contaminated site, the mean level of all the metals in soil and different parts (root, stalk, and leaf) of the plant were found to be significantly (p < 0.01) higher than the uncontaminated site. Multivariate analysis was used to determine the distribution of metals within the study area. The trace metal contents from different parts of these plants were determined by the use of AAS. The results revealed that Urtica dionica L. translocated high amounts of metals to its organs, especially to leaves, so that translocation factors were much higher than one (> 1). However, these concentrations of heavy metals in the soil and Urtica dionica L were higher than levels specified according to the standards in UK and Germany.
EN
Irrigation of cultivated plants can be a source of toxic lithium to plants. The data on the effect of lithium uptake on plants are scant, that is why a research was undertaken with the aim to determine maize ability to bioaccumulate lithium. The research was carried out under hydroponic conditions. The experimental design comprised 10 concentrations in solution differing with lithium concentrations in the aqueous solution (ranging from 0.0 to 256.0 mg Li ∙ dm-3 of the nutrient solution). The parameters based on which lithium bioretention by maize was determined were: the yield, lithium concentration in various plant parts, uptake and utilization of this element, tolerance index (TI) and translocation factor (TF), metal concentrations in the above-ground parts index (CI) and bioaccumulation factor (BAF). Depression in yielding of maize occurred only at the highest concentrations of lithium. Lithium concentration was the highest in the roots, lower in the stems and leaves, and the lowest in the inflorescences. The values of tolerance index and EC50 indicated that roots were the most resistant organs to lithium toxicity. The values of translocation factor were indicative of intensive export of lithium from the roots mostly to the stems. The higher uptake of lithium by the above-ground parts than by the roots, which primarily results from the higher yield of these parts of the plants, supports the idea of using maize for lithium phytoremediation.
PL
Celem badań było określenie zdolności kukurydzy do bioakumulacji litu. Badania prowadzono w warunkach kultur wodnych. Schemat doświadczenia obejmował 10 obiektów różniących się stężeniem litu w roztworze wodnym, w zakresie od 0.0–256.0 mg Li∙dm-3 pożywki. Jako parametry, na podstawie których określono bioretencję litu przez kukurydzę przyjęto: plon, zawartość litu w różnych częściach rośliny, pobranie i wykorzystanie tego pierwiastka oraz indeksy: tolerancji plonu (TI), translokacji (TF), stężenia metalu w częściach nadziemnych (CI) i bioakumulacji (BAF). Depresja plonowania kukurydzy wystąpiła przy dawce 128 i 256 mg Li ∙ dm-3. Na podstawie uzyskanych wyników stwierdzono, że korzenie charakteryzowały się największymi zawartościami litu, natomiast niższymi łodygi i liście, a najmniejszymi kwiatostany. Wartości indeksu translokacji świadczą o intensywnym przemieszczaniu się litu z korzeni do części nadziemnych. Najwięcej litu pobrały łodygi, następnie korzenie, liście, a najmniej kwiatostan. Pobranie litu przez kukurydzę, w zależności od obiektu, wahało się od 2.31 do 24.36% w stosunku do ilości wprowadzonej do obiektu. Najmniejszy fi toodzysk odnotowano w obiektach, w których zastosowano największe ilości litu (3200-6400 mg Li akwarium-1), co zapewne było związane z dużymi dawkami litu oraz niskim plonowaniem i pobraniem tego pierwiastka przez kukurydzę.
EN
The study of bottom sediments and organs of Sparganium erectum carried out in the summer of 2014 in the city of Lębork, located in Northern Poland. The aim of this study was to evaluate the content of macroelements and heavy metals in the leaves, rhizomes and roots S. erectum and in bottom sediments of the Łeba River as well as comparison of accumulation and translocation factors of N, P, K, Mg, Ca, Zn, Ni, Cu, Mn, Fe, Cd and Cr in researched organs of aquatic plant. The use of S. erectum for biomonitoring and phytoremediation has also been considered. The results of Mann Whitney U test showed a number of statistically significant differences in the content of chemical elements in the leaves, rhizomes, roots and in bottom sediments. The macroelements are mainly accumulated in leaves and heavy metals are accumulated in roots and rhizomes of S. erectum. Increased Mn and Fe content in roots and rhizomes of S. erectum, in relation this physiological needs, refers to the beneficial effects of this species in the water treatment and sludge from the bottom sediment of manganese and iron compounds. The obtained bioconcentration and translocation factors values allowed to state that S. erectum can be used for phytoremediation of contaminated bottom sediments because retains metals in their roots and limit Mn and Fe mobility from roots and rhizomes to leaves once absorbed by roots of plant.
EN
Accumulation and enrichment of heavy metals in the above ground parts of Australian native Acacia pycnantha (Ap) and Eucalyptus camaldulensis (Ec) growing in an abandoned copper mine located in Kapunda, South Australia have been studied. Cu and other metals (Na, Al, K, Ca, Fe, Zn, Cd and Pb) in plants and corresponding soils were analysed to evaluate plant interaction with soils containing heavy metals. As per the total metal analysis of leaf and corresponding soil samples, Ap accumulated 93.6 mg kgˉ¹ of Cu in leaf while the corresponding soil concentration was 1632 mg kgˉ¹. The Ec accumulated 5341 mg kgˉ¹ of Cu in leaf while the concentration of this heavy metal in soil was 65 mg kgˉ¹ in soil. The ESEM spectral analysis also showed a high leaf concentration of Cu in Ec (7%) as against only 0.12% in Ap. The average bioconcentration factor for Cu, Zn,Cd and Pb in Ec wasmuch higher than that of Ap. Similarly, enrichment factor was more in Ec for Cu, Zn and Pb than in Ap. In contrast, translocation factor for only Zn and Cd was high in Ap. This study points out that Ec and Ap have different stabilising potential in remediating heavy metals like Cu in mined soils.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.