The paper presents four key mathematical models of a transient cavitating pipe flow, i.e. the column separation model (CSM), the gas cavitation model (CSMG), Adamkowski’s model (CSMA) and the bubbly cavitation model (BCM). All models investigated in the paper take into account unsteady frictional loss models. The equations describing all models have been solved using the method of characteristics at first and the finite differences method then. The results of numerical simulations have been compared with the results obtained in the experiments. Transients which have taken into account the unsteady wall shear stress fit well with the results of experiments in comparison with the quasi-steady wall shear stress model.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The paper presents two key mathematical models of transient cavitating pipe flow, i.e. column separation model (CSM) and bubbly cavitation model (BCM). Both models investigated in the paper take into account unsteady frictional loss models. The equations describing the CSM and BCM models have been solved using first the method of characteristics and then the finite differences method. The results of numerical simulations have been compared with the results obtained in the experiments. Transients which took into account unsteady wall shear stress fit well the results of experiments in comparison with quasi-steady wall shear stress model.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.