Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  transformaty Hilberta
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Recent achievements in the development of low-frequency high-resolution mechanical spectroscopy (HRMS) are briefly reported. It is demonstrated that extremely low values of the loss angle, ϕ, (tanϕb = 1×10−5) can be measured as a function of frequency, and the precision in estimation of the dynamic modulus is better than 1×10−5 in arbitrary units. Three conditions must be fulfilled to obtain high resolution in subresonant and resonant mechanical loss measurements: (1) noise in stress and elastic strain signals must be lower than 70 dB, (2) high quality of stress and strain signals must be tested both in the frequency- and time-domains, and (3) the estimation of the mechanical loss and modulus must be verified by at least two different computing methods operating in the frequency- and time-domains. It is concluded that phase measurements in the subresonant domain are no longer determined by precision in estimation of the loss angle. Recent developments in high-resolution resonant mechanical loss measurements stem from the application of advanced nonparametric and parametric computing methods and algorithms to estimate the logarithmic decrement and the elastic modulus from exponentially damped free decaying oscillations embedded in experimental noise. It is emphasized that HRMS takes into account the presence of noise in the stress and strain signals, which has not yet been addressed in the literature. The coupling of a low-frequency mechanical spectrometer with an in-situ laser dilatometer is suggested as a new perspective research area in Materials Science.
PL
W pracy przedstawiono najnowsze osiągnięcia związane z powstaniem i rozwojem niskoczęstotliwościowej wysokorozdzielczej spektroskopii mechanicznej, HRMS. Wykazano, że możliwym jest pomiar skrajnie niskich wartości kąta strat ϕ, (tanϕb = 1×10−5) mierzonych w funkcji częstotliwości, zaś dokładność pomiaru dynamicznego modułu sprężystości jest lepsza niż 1×10−5, w jednostkach względnych. Do uzyskania wysokiej rozdzielczości w zakresie subrezonansowej i rezonansowej spektroskopii mechanicznej koniecznym jest spełnienie trzech warunków: (1) szum w sygnałach naprężeń i odkształceń sprężystych musi być bardzo niski, tzn. poniżej poziomu 70 dB, (2) sygnały naprężeń i odkształceń sprężystych muszą być wysokiej jakości i muszą przejść stosowne testy zarówno w dziedzinie częstotliwości, jak i czasu, (3) obliczone wartości strat mechanicznych i modułu sprężystości muszą być zweryfikowane przez co najmniej dwie różne metody obliczeń prowadzone w dziedzinie częstotliwości i czasu. Jednym z najważniejszych wniosków jest stwierdzenie, że pomiary różnic w fazie pomiędzy sygnałami naprężenia i odkształcenia sprężystego w zakresie subrezonansowym, nie są zdeterminowane, jak dotychczas twierdzono, przez ograniczenia w dokładności obliczeń kąta strat. Najnowsze osiągnięcia uzyskane w rozwoju wysokorozdzielczej rezonansowej spektroskopii mechanicznej wynikają z zastosowania nowych zaawansowanych nieparametrycznych i parametrycznych metod obliczeń i algorytmów do estymacji logarytmicznego dekrementu tłumienia oraz modułu sprężystości z wykładniczo tłumionych swobodnie zanikających oscylacji zawierających szum eksperymentalny. W pracy podkreślono, że wysokorozdzielcza spektroskopia mechaniczna HRMS uwzględnia obecność szumu w sygnałach naprężeń i odkształceń, która dotychczas nie była brana pod uwagę w literaturze światowej. Wykazano również, że połączenie niskoczęstotliwościowego spektrometru mechanicznego z in-situ dylatometrem laserowym w jednym urządzeniu badawczym otwiera nowe możliwości poznawcze w zakresie inżynierii materiałowej.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.