The paper presents application of the convolutional neural network (CNN) in face recognition. The CNN is regarded nowadays as the most efficient tool in image analysis. This technique was applied to recognition of two databases of faces: the own base containing 68 classes of very different variants of face composition (grey images) and 244 classes of color face images represented as RGB images (MUCT data base). This paper will compare different solutions of classifiers applied in CNN, autoencoder and the traditional approach relying on classical feature generation methods and application of support vector machine classifier. The numerical results of experiments performed on the face image database will be presented and discussed.
PL
Praca przedstawia zastosowanie sieci CNN w rozpoznaniu obrazów twarzy. Twarze poddane eksperymentom pochodzą z dwu baz danych. Jedna z nich jest własną bazą zawierającą 68 klas reprezentowanych w postaci obrazów w skali szarości i drugą (MUCT) zawierającą 244 klasy reprezentujące obrazy kolorowe RGB. Zbadano i porównano różne metody rozpoznania obrazów. Jedna z nich polega na zastosowaniu konwolucyjnej sieci neuronowej CNN z dwoma różnymi klasyfikatorami końcowymi (softmax i SVM). Inne głębokie podejście stosuje autoenkoder do generacji cech i SVM jako klasyfikator. Wyniki porównano z klasycznym podejściem wykorzystującym transformację PCA w połączeniu z klasyfikatorem SVM.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The paper presents application of the convolutional neural network (CNN) in face recognition. Data bases of faces have been represented by the visible and thermal infra-red images. The CNN is regarded nowadays as the most efficient tool in image analysis. This technique was applied to recognition of 50 classes of face images represented in visual and infrared imagery. This approach will be compared to the traditional approach relying on classical feature generation methods and application of support vector machine classifier. The numerical results of experiments performed on the face image data base will be presented and discussed.
PL
Praca przedstawia porównanie metod rozpoznawania twarzy przy zastosowaniu konwolucyjnych sieci neuronowych (CNN) i klasycznego podejścia opartego na specjalistycznych metodach generacji cech diagnostycznych. Twarze są reprezentowane w postaci 2 rodzajów obrazów: widzialnego oraz w podczerwieni. Zbadano i porównano dwa podejścia do analizy obrazów. Jeden polega na zastosowaniu konwolucyjnej sieci neuronowej łączącej w jednym systemie generację nienadzorowaną cech diagnostycznych i klasyfikację. Drugie, klasyczne podejście, rozdzielające obie części przetwarzania. Generacja cech odbywa się poprzez zastosowanie specjalistycznych metod (tutaj PCA, KPCA i tSNE), a klasyfikacja wykorzystuje te cechy jako sygnały wejściowe dla oddzielnego klasyfikatora SVM. Wyniki eksperymentów numerycznych zostały przedstawione i porównane na bazie 50 różnych obrazów twarzy stworzonych w różnych warunkach oświetlenia i akwizycji.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The paper is concerned with the recognition of faces represented by the visible and infra-red images. Different methods of image feature generation at application of different classifiers will be studied and compared for both types of face imagery. The investigated approaches include the linear and nonlinear methods of transformation: principal component analysis (PCA), Kernel PCA, Sammon transformation and stochastic neighbor embedding with t-distribution (tSNE). The representation of the image in the form of limited number of main components of transformation is applied to the input of support vector machine classifier and random forest. The numerical results of experiments will be presented and discussed.
PL
Praca przedstawia porównanie metod rozpoznawania twarzy na podstawie dwu rodzajów obrazów: widzialnego oraz w podczerwieni. Zbadano kilka metod przetwarzania obrazu w cechy diagnostyczne: metodę opartą na PCA, nieliniową metodę KPCA, odwzorowanie Sammona oraz transformację stochastyczną tSNE. Każda z tych metod generuje inny zestaw cech diagnostycznych użytych jako atrybuty wejściowe dla klasyfikatora. W pracy zastosowano zespół klasyfikatorów stosujących sieć SVM oraz las losowy Breimana . Przedstawiono wyniki rozpoznania każdego z tych klasyfikatorów współpracujących z odpowiednim zestawem atrybutów wejściowych oraz wynik fuzji poszczególnych rezultatów. Jako jednostkę integrującą zespół zastosowano las drzew losowych. Wyniki pokazują, że zastosowanie wielu metod przetwarzania obrazu w cechy diagnostyczne i równoległego obrazowania twarzy w postaci widzialnej i w podczerwieni pozwala zwiększyć efektywność rozpoznania o około 30%.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The paper is concerned with the recognition of faces at application of different methods of global feature generation. We check the selected choice of transformations of images, leading to the numerical representation of the face image. The investigated approaches include the linear and nonlinear methods of transformation: principal component analysis (PCA), Kernel PCA, Fisher linear discriminant analysis (FLD), Sammon transformation and stochastic neighbor embedding with t-distribution (tSNE). The representation of the image in the form of limited number of main components of transformation is put to the input of support vector machine classifier (SVM). The numerical results of experiments are presented and discussed.
PL
Praca przedstawia analizę porównawczą różnych metod wstępnego przetwarzania obrazów twarzy dla wygenerowania cech diagnostycznych zastosowanych w klasyfikacji. W badaniach uwzględniono metodę transformacji PCA, KPCA, FLD, transformację nieliniową Sammona oraz transformację tSNE. Cechy wygenerowane przy użyciu tych metod stanowią sygnały wejściowe dla klasyfikatora SVM dokonującego ostatecznego rozpoznania. W pracy pokazano i przedyskutowano wyniki przeprowadzonych eksperymentów rozpoznania twarzy przy uwzględnieniu zmiennej liczby cech dla różnej liczby klas.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.