In this research study, a newly devised integral transform called the Mohand transform has been used to find the exact solutions of fractional-order ordinary differential equations under the Caputo type operator. This transform technique has successfully been employed in existing literature to solve classical ordinary differential equations. Here, a few significant and practically-used differential equations of the fractional type, particularly related with kinetic reactions from chemical engineering, are under consideration for the possible outcomes via the Mohand integral transform. A new theorem has been proposed whose proof, provided in the present study, helped to get the exact solutions of the models under investigation. Upon comparison, the obtained results would agree with results produced by other existing well-known integral transforms including Laplace, Fourier, Mellin, Natural, Sumudu, Elzaki, Shehu and Aboodh.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.