Deep Brain Stimulation (DBS) has proven its efficiency in the treatment of Parkinson's disease or essential tremor. It requires precise localizations of targets for instance in the thalamus. Since deep brain structures have been shown to be hardly visible on T1 or T2 weighted imaging, most methods rely on atlas based comparison and registration. It is however possible to use direct targeting using a specific MRI sequence called WAIR (White Matter Attenuated Inversion Recovery) even on 1.5 Tesla MRI machine. The direct targeting facilitates the precise segmentation of deep brain structures needed to plan the trajectories of the electrodes for the DBS. But this remains a tedious delineation necessarily done by a neurosurgeon to avoid misinterpretation of the images. In this paper, we propose to build an isotropic super-resolution image for WAIR imaging to facilitate precise direct targeting of anatomical structures in the deep brain. We present a method to perform the reconstruction of a high resolution isotropic WAIR volume from three acquisitions performed on a volunteer subject. The method is based on transfinite interpolation in convex cells of an hyperplane arrangement. Our results show promising quality reconstruction for the computation of a super-resolution WAIR. It allows unambiguous segmentation of the deep brain to be used in DBS surgery.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.