Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  transfemoral amputee
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Background: The evidences for demonstrating the contributions of the cerebral cortex in human postural control is increasing. However, there remain little insights about the cortical correlates of balance control in lower-limb amputees. The present study aimed to investigate the cortical activity and balance performance of transfemoral amputees in comparison to healthy individuals during a continuous balance task (CBT). Methods: The postural stability of the participants was defined with limit of stability parameter. Electroencephalography (EEG) data were recorded in synchronization with the center of pressure (CoP) data from eighteen individuals (including eight unilateral transfemoral amputees). We anticipated that, due to the limb loss, the postural demand of transfemoral amputees increases which significantly modulates the spectral power of intrinsic cortical oscillations. Findings: Using the independent components from the sensorimotor areas and supplementary motor area (SMA), our results present a well-pronounced drop of alpha spectral power at sensorimotor area contralateral to sound limb of amputees in comparison to SMA and the sensorimotor area contralateral to prosthetic limb. Following this, we found significantly higher (p < 0.05) limit of stability (LOS) at their sound limb than at the prosthetic limb. Healthy individuals have similar contribution from both the limbs and the EEG alpha spectral power was similar across the three regions of the cortex during the balance control task as expected. Overall, a decent correlation was found between the LOS and alpha spectral power in both amputee and healthy individuals (Pearson’s correlation coefficient > 0.5). Interpretation: By externally stimulating the highlighted cortical regions, neuroplasticity might be promoted which helps to reduce the training time for the efficient rehabilitation of amputees. Additionally, this new knowledge might benefit in the designing and development of innovative interventions to prevent falls due to lower limb amputation.
EN
Physiological parameters analysis allows for a precise quantification of energy expenditure of transfemoral amputees with different prosthetic knees. Comparative physiological parameters analysis that indicate the functional characteristics of knee joints is essential to the choice of transfemoral amputee. The aim of this study was to propose a microprocessor-controlled prosthetic knee (i-KNEE) and conducted physiological parameters (energy cost, gait efficiency and relative exercise intensity) comparison of transfemoral amputees with C-leg, Rheo Knee and Mauch under different walking speeds. Methodsː A microprocessor-controlled prosthetic knee with hydraulic damper (i-KNEE) was developed. A two-factor repeated measurement experiment design was used. Each subject was instructed to accept the same treatments. The two factors were type of prosthetic knees (the i-KNEE, the C-Leg, the Rheo Knee and the Mauch) and speed (0.5, 0.7, 0.9, 1.1, 1.3 m/s). The energy cost, gait efficiency and relative exercise intensity of ten transfemoral amputees were measured. Resultsː For all the prosthetic knees, the energy cost increased along with walking speed. There was no significant difference between three microprocessor-controlled prosthetic knees in energy cost. The gait efficiency of Mauch was always less than or equal to other three microprocessor-controlled prosthetic knees in specific walking speed. The relative exercise intensity increased with speed for all the prosthetic knees. More effort was needed for the transfemoral amputees with Mauch than other three microprocessorcontrolled prosthetic knees in the same walking speed. Conclusionsː The use of the microprocessor-controlled knee joints resulted in reduced energy cost, improved gait efficiency and smaller relative exercise intensity.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.