Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  train safety
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Railways deliver a safe and sustainable form of transport and are typically pointed as one the safest form of transportation. Nevertheless, train accidents still happen, and when they happen, the consequences concern serious fatalities and injuries. Since every case is unique, the most frequent causes of train accidents are mechanical derailments, failures, as well as human errors and ignorance. In order to mitigate the risks posed by both physical and human related factors, various technological advancements have been designed and implemented. Among many existing Train Control and Monitoring Systems (TCMS), one can observe that recently developed artificial intelligence (AI) methods are also considered to be integrated part of the modern TCMS solutions. Following recent AI improvements and trends, in this paper we aim to present and discuss our newly developed TCMS system. In particular, both the system architecture and features are described along with the expected benefits of its implementation.
2
Content available remote Modelling and Analysis of Wave Propagation in Railway Wheel Rims
EN
The paper is concerned with railroad wheel rim behavior under concentrated transverse contact forces. Design of underframe elements of modern high-speed railway vehicles requires detailed understanding of the behaviour of wheelsets, especially wave propagation in wheel rims, responsible for noise emitted, wear, corrugation, wheel poligonalisation etc. (Bogacz, 1995). In the present study, a wheel rim is treated as a curved beam of various beam models like curved Bernoulli-Euler beam, curved Rayleigh beam and curved Timoshenko beam (Bogacz, Kocjan, Kurnik 2003). They are compared with the Mahrenholtz approach based on the straight beam theory (Mahrenholtz, 2000). The influence of wheel radius on transverse wave propagation in the rim is studied. The wheel plate is modelled as a viscoelastic Winkler-type foundation (Bogacz, Dżuła, 1998). Travelling waves are analyzed with special attention paid to the velocity of propagation. The beam equations are solved using Fourier transformation, and the results are presented in form of time-space graphs. The effect of the vehicle speed is studied as well. The results obtained indicate important criteria to be taken into account in design of modern high-speed railroad wheelsets and bogies. It is shown that in general curved beam theory should be applied, but under some particular conditions the straight beam model is accurate enough. The influence of the internal stresses combined with wheel plate stiffness on wave propagation is presented as well.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.