Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  traction lift
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper describes the structural design of a laboratory device that allows for presenting operation, simulating work procedures and checking functionality of the elevator “rope sensors” when equalizing different tensile forces in partial ropes of a rope system of traction elevators. The laboratory device is modified for checking operations of commonly used rope sensors. In an overwhelming number of cases, elevator technicians use them for setting up the unequally distributed tensile forces in elevator ropes. The device is equipped with three, mutually attached pulleys, over which the rope is installed. The unknown tensile force in the rope is determined by an “indirect method”, i.e. from the resultant of the forces of the rope bent over the pulleys, which have an effect on the force sensor. The tensile force along the rope axis can be determined numerically, but also experimentally, from the inclination angle of the rope installed on the pulleys, diameter of the pulleys, diameter of the rope and the force detected by the force sensor of the stretched rope. The paper presents experimentally obtained tensile force values at the rope sensor, deduced from stretching the rope. The paper also describes the procedure for determining the measured load in the rope by rope sensors of the SWR, SWK and RMT-1 types based on the variable axial force in the rope.
EN
Due to self-acting variability of operating conditions during the work of lifting devices, it is fundamental for the gears to stop the cabin at any clearance height. The operating conditions are changed by dust contamination influencing a proper braking process of the gear. This article presents the independent tests results. The impact of progressive gear geometry on the braking distance both in variable operating conditions and variable loading is analyzed. The tests were conducted for the gear applied in short distance transportation devices. Changing operating conditions were obtained by using various lubricating agents. The following five types of the gears were used for the tests: ASG100, PP16, PR2000, KB160. CHP 2000 gear was tested as a new solution. The tests were conducted using a free fall method. The test results obtained from an experiment were approximated by using Savitzky-Golay method.
EN
The paper investigates the effect of various disk spring package configura-tions on brake load of safety progressive gears. The numerical analysis is performed using the Abaqus/CAE software and the designed 3D models. The numerical results are then verified in experimental tests. The tests also examine the effect of lubrication on brake load of spring packages. In addition, the paper investigates the work conditions of safety progressive gears at emergency braking. The experimental results show agreement with the numerical results.
EN
This article presents independent tests results focused on the geometry impact of progressive gear used in a short distance transportation devices on the braking distance length both under changeable operating conditions as well as changeable loading. Variable operating conditions were obtained with the use of various lubricating agents. Five types of gears such as ASG100, PP16, PR2000, KB160 and a new solution CHP2000 were used for the tests. The tests were conducted with a free fall method application. The method gave a chance to evaluate reliability of tested gears systems and to compare the existing solutions with the proposed gear of CHP2000 type.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.