Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  tracked undercarriage
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the study, the functional safety of the hydraulic drive control system of a tracked undercarriage used as a mobile platform for a robotic bricklaying system (RBS) was evaluated. Hazards and risks caused by the hydraulic drive control system of the rubber track undercarriage were identified. The schematic diagram and main components of the conventional hydraulic drive control system of a tracked undercarriage are presented. The functions and parameters of the components of the hydraulic power and control system are discussed. In a conventional hydraulic drive, the safety function is fulfilled by failsafe brakes built into the hydraulic motors. To ensure that the RBS works safely on the construction site, it was necessary to introduce an advanced safe control system for the hydraulic drive of the tracked undercarriage. An advanced safe control system for the hydraulic drive of the tracked undercarriage includes hydraulic control valves with safety functions, a category 3 safe two-channel control architecture, and a safety microcontroller. SISTEMA software tools were utilized to determine safety functions and calculate their specifications. Based on the specifications of the safety function associated with the category of safety control architecture, the achievable performance level of the hydraulic drive control system for the tracked chassis was determined.
EN
This study presents an innovative solution for a mobile robotic unit intended for the construction industry, the task of which is to automate time-consuming and burdensome masonry work performed manually using bricklayers. A ZSM mobile robotic bricklaying system (ZSM in Polish Zrobotyzowany System Murarski) was designed and developed in a demonstration version. The mobile ZSM consists of an ABB six degrees-of-freedom (6 DoF) industrial robot with a replaceable hydraulic gripper, a Hinowa tracked undercarriage with a hydraulic unit, hydraulic lifting and leveling module, a brick warehouse, a brick belt feeder, a mortar applicator, a control cabinet, and a control panel. Simulation tests were performed in a virtual ABB RobotStudio environment to verify the functioning of the robot and individual ZSM modules during the bricklaying process. ZSM control is based on the Siemens Simatic S7-1500 programmable controller in the fail-safe version, which supervises the correct operation of all devices. ZSM was tested under laboratory conditions and on the construction site. The robotic technological process of building a wall consists of the following stages: the robot grips the bricks, picks them up, manipulates them, applies mortar to them, and places them on the wall.
PL
W artykule przedstawiono innowacyjne rozwiązanie mobilnej jednostki robotycznej na potrzeby branży budowlanej, której zadaniem jest automatyzacja czasochłonnych i uciążliwych prac murarskich wykonywanych ręcznie przez murarzy. Zaprojektowano i opracowano mobilny zrobotyzowany system murarski (ZSM) Innovative solution of mobile robotic unit for bricklaying automation 32 wwersji demonstracyjnej. ZSM składa się z robota przemysłowego ABB o sześciu stopniach swobody (6 DoF) z wymiennym chwytakiem hydraulicznym, podwozia gąsienicowego Hinowa zagregatem hydraulicznym, modułu hydraulicznego podnoszenia i poziomowania, magazynu cegieł, podajnika cegieł, aplikatora zaprawy, szafy sterowniczej i panelu sterowania. W środowisku wirtualnym ABB RobotStudio przeprowadzono szereg testów symulacyjnych w celu weryfikacji funkcjonowania robota i poszczególnych modułów ZSM podczas procesu murowania. Sterowanie mobilnym ZSM oparte jest na sterowniku programowalnym Siemens Simatic S7-1500 w wersji fail-safe, który nadzoruje poprawną pracę wszystkich urządzeń. ZSM został przetestowany w warunkach laboratoryjnych i na budowie. Robotyczny proces technologiczny budowy ściany składający się z następujących etapów: robot chwyta cegły, podnosi je, manipuluje nimi, nakłada na nie zaprawę i umieszcza je w ścianie.
3
Content available remote On the energy losses due to tracks vibrations in rubber track crawler vehicles
EN
In spite of an increasing number of rubber-tracked vehicles, there are no engineering models for predicting and optimizing the energy consumption of vehicles of this type. To formulate those models, the models of the phenomena resulting in the internal losses of rubber-track systems need to be developed. This article presents a model describing the losses caused by the transverse vibrations of rubber tracks. The predictions made using the model are discussed against the background of the preliminary experimental tests on a sample rubber track for heavy off-road vehicles. The model predictions and the experimental tests suggest that the losses caused by the 1st mode vibration of rubber tracks are marginal in relation to the total internal resistance of rubber-track systems. However, according to the model predictions, a significant increase in the rubber-tracked undercarriage internal resistance is expected as a result of the high-amplitude track vibrations corresponding to the higher-order modes. To make the model applicable in practice, a method for determining the essential parameters of the model, including the bending stiffness and the decrement of oscillation damping, is demonstrated. The accuracy of the method is confirmed by the computations, where the sag and the frequency of the 1st mode free vibration of a sample track are predicted with an error of 10% and 1.8%, respectively. The parameter values obtained by this method are suitable for modeling a wide variety of off-road vehicles. The method can be applied to many other types of reinforced rubber belts, e.g., conveyor belts.
EN
Design of optimal machines and off-road vehicles requires, among others the knowledge of dynamic interaction of the traction components with soil. Due to the lack of constitutive equation of soil, in practice the research centres worldwide use the so-called process analogues, i.e. the special test devices. These devices however are used only for static tests and are burdened with the scale error. They are also often subject to the so-called wall effect and bulldozing effect. The research conducted in The Department of Off-Road Machine and Vehicle Engineering has shown that in the dynamic interaction of traction components or working tools with soil a substantial strengthening of cohesive soils, which can cause even several times increase in their strength, which significantly changes the commonly used relationships based on static tests. In the article, the unique on the international scale test equipment developed in the Department of Off-Road Machine and Vehicle Engineering for experimental identification of dynamic soil strength parameters is shown. In addition, the initial results of the tests obtained with this device in the laboratory and in situ are presented. The practical impact of dynamic strengthening of soil are presented as opposite to the conventional methods, at the example of traction forces generated by the tracked undercarriage estimated by virtue of an undercarriage analytical model.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.