The article provides a discussion on the results of the authors’ original studies of a power transmission system of a mining scraper conveyor coupled with an innovative highly flexible clutch, conducted in operating conditions. The research consisted in establishing the static characteristics of the highly flexible clutch in question, determining the torsional vibrations of the said highly flexible clutch and the vibrations of the transmission housings at a test rig, verifying if the coupling between the innovative flexible clutch and a typical scraper conveyor drive unit was correct, and testing durability of individual components of the highly flexible clutch. Following the aforementioned tests and based on the static characteristics of the highly flexibleclutch examined, one can distinguish three phases of its operation: initial, main, and final –all differing in terms of flexibility. Furthermore, upon increasing the flexibility of the metal clutch, a significant decline in the root mean square (RMS) values of linear vibration accelerations was observed compared to the blocked condition of the clutch. It was further noticed that, as the torsional vibrations of the clutch shaft were increasing, the linear vibrations measured at the transmission bearing housings were decreasing significantly. Based on the tests conducted in operating conditions, it was found that the durability of the flexibilising system (bolt and nut) was sufficient and that there were no thermal effects associated with the motion of the system components.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.