We present a general theory of topological semiattractors and attractors for set-valued semigroups. Our results extend and unify those previously obtained by Lasota and Myjak. In particular, we naturally generalize the concept of semifractals for the systems acting on Hausdorff topological spaces. The main tool in our analysis is the notion of topological (Kuratowski) limits. We especially focus on the forward asymptotic behavior of discrete set-valued processes generated by sequences of iterated function systems. In this context, we establish sufficient conditions for the existence of fractal-type limit sets.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.