Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  topological entropy
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available On ∞-entropy points in real analysis
EN
We will consider ∞-entropy points in the context of the possibilities of approximation mappings by the functions having ∞-entropy points and belonging to essential (from the point of view of real analysis theory) classes of functions: almost continuous, Darboux Baire one and approximately continuous functions.
2
Content available remote Teoria chaosu w ujęciu matematycznym
PL
Niniejsza praca stanowi próbę przedstawienia istniejących definicji chaosu dla dyskretnych układów dynamicznych. Dyskusję zawężono do zagadnień związanych z dynamiką topologiczną. Przedstawiono i umotywowano definicje: wrażliwości na warunki początkowe, chaosu w sensie Li i Yorke’a, Auslandera i Yorke’a, Devaneya, chaosu dystrybucyjnego, entropii topologicznej i podkowy topologicznej. Podzielono się pewnymi uwagami historycznymi. Omówiono znane związki między różnymi definicjami chaosu i przypomniano związane z nimi problemy otwarte.
EN
This work is intended as an attempt to survey existingde finitions of chaos for discrete dynamical systems. Discussion is restricted to the settingof topological dynamics, while the measure-theoretic (ergodic theory) and smooth (differentiable dynamical systems) aspects are omitted as exceedingt he scope of this paper. Chaos theory is understood here as a part of topological dynamics, so aforementioned definitions of chaos are just examples of particular dynamical system properties, and are considered inside the framework of the mathematical theory of discrete dynamical systems. It is not the purpose of this article to study chaos theory understood as a new kind of interdisciplinary branch of science devoted to nonlinear phenomena. As for prerequisites, the reader is expected to possess some mathematical maturity, and to be familiar with basic topology of (compact) metric spaces. No preliminary knowledge of the dynamical systems theory is required, however some is recommended. The first two section are devoted to general discussion of the term "chaos" and contains authors opinion on this subject. To facilitate access to the rest of the article some relevant material from the dynamical system theory is briefly repeated in the third section. The next section (Section 4) introduces the notion of topological transitivity along with some stronger variants, namely topological mixing and weak mixing. Section 5 gives a detailed account of the famous Sharkovskii's Theorem in its full generality. This is required for characterization of chaotic interval maps. Sections 6-13 are devoted to various notions of chaos or related to chaos in dynamical systems. Each section contains an attempt to motivate the notion, historical background and formal definition followed with a review of known properties, relations between various notions of chaos, and some relevant open problems. Section 6 is devoted to a sensitivity to initial conditions – a notion which is accepted as a basic indicator of chaotic behavior. Section 7 introduces a definition of chaos accordingt o Auslander and Yorke. Section 8 examines the notion of Li-Yorke pair and Li-Yorke chaos. Section 9 deals with the definition of chaos introduced in Devaney's book (Devaney chaos). Section 10 recalls some facts connected with symbolic dynamics, which provides a rich source of examples for various interestingb ehavior, and it is an indispensable tool for exploration of many systems. Section 11 describes the so-called "topological horseshoes", which are generalizations of the famous example due to Smale. The existence of a horseshoe in a given dynamical system proves the existence of a subsystem with a dynamics similar to some symbolic dynamical system, hence with a very complicated beTeoria chaosu w ujęciu matematycznym 45 havior. Section 12 gives a brief exposition of the topological entropy and its relation to chaos. The review of various notions of chaos ends with section 13, containingd escription of distributional chaos.
PL
Załóżmy, że Α∞ jest zbiorem skończonych i prawostronnie nieskończonych słów z wprowadzoną na nim tzw. topologią naturalną, a odwzorowanie h: Α∞ jest naturalnym rozszerzeniem morfizmu h: Α*--Α* z pustym zbiorem martwych symboli. Dowiedziono, że topologiczna entropia takiego odwzorowania jest równa zeru. Ponadto, przedstawiono przykład tego typu funkcji, która jest chaotyczna w sensie Li-Yorke.
EN
Let Α∞ be a set of finite and right-infinite words with so called "natural topology" and let h: Α∞ be a mapping which is the natural extension of an endomorphism h: Α*--Α* with the empty set of mortal symbols. It is proved that the mapping has zero topological entropy. Moreover, an example of such nonchaotic in the sense of Li-Yorke function is given.
4
Content available remote Extreme relations for topological flows
EN
We introduce the concept of an extreme relation for a topological flow as an analogue of the extreme measurable partition for a measure-preserving transformation considered by Rokhlin and Sinai, and we show that every topological flow has such a relation for any invariant measure. From this result, it follows, among other things, that any deterministic flow has zero topological entropy and any flow which is a K-system with respect to an invariant measure with full support is a topological K-flow.
EN
It is shown that a minimal dynamical system chaotic in the sense of Schweizer-Smital may be monoergodic and have zero topological entropy. This paper provides also an example of system chaotic in the sense of Schweizer-Smital whose dynamics is very simple.
EN
We investigate the topological entropy of a green interval map. Defining the complexity we estimate from above the topological entropy of a green interval map with a given complexity. The main result of the paper — stated in Theorem 0.2 — should be regarded as a completion of results of [4].
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.