Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 31

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  toksykokinetyka
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
PL
W artykule przedstawione zostały podstawowe informacje na temat toksykologii związków psychoaktywnych. Opisuje on mechanizmy absorpcji, przemian i wydalania, a także sposoby działania wybranych substancji. Artykuł opisuje ponadto typy działań ubocznych, które wywołują związki psychoaktywne.
EN
The following article introduces principles of toxicology of psychoactive substances. It describes mechanisms of absorption, metabolism and excretion of selected compounds, as well as their mode of action. The article also describes side effects of psychoactive substance administration.
PL
Ołów (Pb) jest miękkim srebrzystoszarym metalem. Należy do grupy 14. układu okresowego. Narażenie na ołów występuje zarówno w środowisku pracy, jak i w środowisku życia. W ciągu ostatnich 20, lat istotnemu zmniejszeniu uległo narażenie na ołów w środowisku życia. Zmniejszeniu uległo także w Polsce narażenie na ołów w środowisku pracy. W narażeniu na ołów o stężeniach większych niż wartość najwyższego dopuszczalnego stężenia (NDS), tj. 0,050 mg/m3 pracuje obecnie w Polsce 3297 osób. W 1991 r. osób tych było 5076. Największą liczbę przekroczeń wartości NDS stwierdzano w procesach: produkcji metali (1864 osób), metalowych wyrobów gotowych, z wyłączeniem maszyn i innych urządzeń (340 osób) oraz urządzeń elektronicznych (316 osób). W środowisku pracy główną drogę wchłaniania ołowiu i jego związków stanowi układ oddechowy, jakkolwiek ołów może się wchłaniać także, zależnie o warunków pracy, z przewodu pokarmowego. Deponowanie aerozoli zawierających ołów w płucach zależy od wymiaru cząstek. Wydajność deponowania cząstek aerozolu zawierającego ołów w płucach ocenia się na 30 -s- 50%. Cząstki aerozolu osadzające się w drzewie oskrzelowym ulegają usunięciu do jamy ustnej i mogą ulec połknięciu. Ołów zawarty we frakcji respirabilnej ulega całkowitemu wchłonięciu z płuc. Z przewodu pokarmowego wchłania się około 10% pobranego ołowiu u osób dorosłych i około 50% u dzieci. We krwi około 99% ołowiu ulega wiązaniu z erytrocytami. Około 92% ołowiu zawartego w organizmie deponuje się w kościach. Stężenie ołowiu we krwi (B-Pb) stanowi wypadkową procesów wchłaniania, roz-mieszczenia i wydalania. Stan równowagi stężeń ołowiu we krwi jest osiągany po około 3 miesiącach od rozpoczęcia narażenia. Po przerwaniu narażenia półokres eliminacji ołowiu z krwi i tkanek miękkich wynosi około 30 dni, a z kości 5 + 10 lat. Łożysko nie stanowi bariery dla ołowiu. Wszystkie skutki zdrowotne narażenia na ołów są odnoszone do stężeń ołowiu we krwi. W związku z tym, istotne było określenie zależności między stężeniami ołowiu w powietrzu (A-Pb) i we krwi, która jest zależna od formy chemicznej ołowiu w powietrzu oraz od rodzaju produkcji. Na podstawie uzyska-nych wyników badań wykazano, że zwiększeniu stężenia ołowiu w powietrzu o 1 ug/m3 odpowiada wzrost stężenia ołowiu we krwi w zakresie 0,3 + 1,9 ug/L. Istnieje duża liczba danych dotyczących działania toksycznego ołowiu u ludzi typu dawka- -skutek i dawka-odpowiedź. Dotyczą one zarówno środowiska pracy, jak i środowiska życia. U osób dorosłych za układy krytyczne działania ołowiu uznaje się: układ krwiotwórczy, układ sercowo-naczyniowy, układ nerwowy oraz nerki. U dzieci układem krytycznym jest ośrodkowy układ nerwowy. Wczesne skutki działania ołowiu w tych układach i narządach pojawiają się u osób dorosłych, gdy stężenie ołowiu we krwi wynosi około 300 ug/L lub nawet poniżej tej wartości. U dzieci działanie ołowiu na ośrodkowy układ nerwowy jest bezprogowe. Ołów został uznany przez IARC za czynnik o udowodnionym działaniu rakotwórczym dla zwierząt i prawdopodobnie rakotwórczym dla ludzi (grupa 2A). Zgodnie z powszechnie zaakceptowaną opinią, podstawę oceny narażenia na ołów powinna stanowić wartość dopuszczalnego stężenia w materiale biologicznym (DSB). Aktualne dane wskazują na możliwy wpływ ołowiu na nerki oraz układy: nerwowy, krwiotwórczy i krążenia, gdy stężenia ołowiu we krwi wynoszą około 300 pg/L. Proponuje się więc zmniejszenie wartości dopuszczalnego stężenia w materiale bio-logicznym (DSB) dla ołowiu do 300 pg B-Pb/L. Wartość ta jest zgodna z zaleceniami ACGIH oraz propozycjami SCOEL i ICOH. Wartość NDS dla ołowiu i jego związków nieorganicznych nie ulega zmianie i wynosi 0,050 mg/m3. W warunkach 8-godzinnego narażenia zawo¬dowego wzrostowi stężenia ołowiu w powietrzu o 1 ng/m3 może odpowiadać wzrost stężeń ołowiu we krwi do 1,9 Hg/L. W związku z tym, narażeniu zawodowemu drogą inhalacyjną na ołów7 o stężeniu równym wartości NDS może odpowiadać przyrost stężenia ołowiu w7e krwi o około 100 ug/L. W Niemczech średnie geometryczne stężenie ołowiu we krwi u osób dorosłych i nienarażonych zawodowo na ołów wynosi 31 ug/L, a wartości referencyjne odpowiadające 95-percentylowi odpowiednio: u kobiet 70 ug/L i u mężczyzn 90 ug/L. W Republice Czeskiej i w7e Francji średnie geome-tryczne stężenia ołowiu w7e krwi wynosiły odpowiednio: 33 i 25,7 ug/ L. Suma stężeń ołowiu we krwi wynikających z narażenia środowisko-wego i zawodowego drogą inhalacyjną nie powinna w związku z tym przekraczać 200 |Jg/L. Przy założeniu, że w środowisku pracy pewne ilości ołowiu mogą się wchłaniać z przewodu pokarmowego, niezależnie od drogi inhalacyjnej, proponowana wartość DSB wynosząca 300 ug/L wydaje się być w pełni uzasadniona. Kobiety w wieku rozrodczym nie powinny pracować w narażeniu na ołów, ze względu na możliwy wpływ związku na rozwój ośrodkowego układu nerwowego płodu. Zgodnie z wymaganiami zawartymi w dyrektywie 98/24/WE, wykonywanie oznaczeń ołowiu we krwi obowiązuje w państwach Unii Europejskiej. Górne ograniczenie wartości stężenia ołowiu we krwi wynosi 700 ug/1, przy czym opieką medyczną powinni zostać objęci pracownicy pracujący w narażeniu na ołów o stężeniach ołowiu we krwi powyżej 400 ug/l. Wartość wiążąca dla ołowiu i jego związków nieorganicznych w powietrzu środowiska pracy zawarta w dyrektywie 98/24 WE wynosi 0,15 mg/ m3.
EN
Lead (Pb, atomic weight 207.19) in inorganic compounds usually has the oxidation state II, but state IV also occurs. Lead is a soft, silvery grey metal. In the Earth's crust it is present in various minerals such as sulfide, carbonate and sulfate. The metallurgy' of lead consists of three separate operations: concentrating ,smelting and refining. Occupational lead exposure occurs in the wide variety of set-tings during primary and secondary lead smelting, working in non-ferrous foundries, production of electric storage batteries, as well as scraping and sanding lead paint. Exposure to lead, both in the occupational and environmental settings decreased significantly during last 20 years. In 2004-2005, in Poland, 3297 persons were exposed to lead in occupational settings in concentrations higher than the Polish OEL amounting to 0.050 pg/m3. In the occupational setting, inhalation is then most significant route of exposure to lead. However, improvements in industry resulted in a reduction of lead concen¬trations in the air, making the gastrointestinal absorption increasingly important. Deposition and absorption of inhaled lead-containing particles are influenced by their size and solubility in w7ater. About 30 - 50% of lead containing parti¬cles is deposited in the lungs. That which is not deposited in alveoli is cleared by the mucociliary escalator and ingested. Only small fraction of ingested lead (about 10 %) in absorbed in adults. Under steady-state conditions, lead in blood is found primarily in the red blood cells (99%). In human adults, approximately 90% of the total body burden is found in the bones. This com¬partment contains two different pools of lead with different turnover rates, trabecular bone (23%) and cortical bone (69%). At the steady state conditions T1/2 of elimination of lead from blood amounts to about one month and from bones to 5 - 10 years. Most of the information on human exposure to lead , and the health effects resulting from it, is based on the lead in blood (B-Pb) levels. At steady state B-Pb reflects a combination of recent lead exposure to that which occurred several years ago. The relationship of B-Pb to air lead (A-Pb) exposure concentrations is as the bridge between A-Pb and possible damage to health of workers. The relationship varied from 0.3 to 1.9 pg/L blood per pg Pb/m’ air. In adults, the health effects of exposure to lead may include inhibition of several enzymes involved in heme synthesis, influence on the functions of the kidney, peripheral and central nervous system, and an increase of blood pressure, which is a significant risk factor for cardiovascular diseases. The threshold for these effects in adults amounts to about 300 pg/L B-Pb. The central nervous system is the main target organ for lead toxicity in children. There is no evidence of a threshold below wTrich lead does not cause neurodevel- opmental toxicity in children. Lead is carcinogenic in animal experiments, but there is only limited evidence for carcinogenicity' in humans (IARC category 2A). Identifying of a blood lead level in workers that would be protective during a working lifetime was necessary for recommending a TLV, because B-Pb values, rather than A-Pb concentrations, were most strongly related to health effects. The recommended BEI of 300 pgL is designed to minimize the possible effects on the mentioned above organs and systems in adults. Certain studies have reported effects at B-Pb below the proposed BEI value. However, the observed effects were transient, did not constitute a decrement in the worker's functional capacity, or was contradicted by other adequately conducted studied. If the steepest slope representing the relationship between B-Pb and A-Pb concentration in the workplace (1.9 pg/L of lead in blood per pg/rn3 air) is used for judging the contribution of airborne concentrations to B-Pb the proposed TLV- TWA of 0.050 mg/ m3 w'ould contribute an airborne, work- related fraction of B-Pb concentration of 95 pg/L. Therefore contributions from community sources and nonairborne workplace contamination should be controllable such that the total B-Pb concentrations could be kept below the BET of 300 pg/L. For example in Germany geometric mean concentration of B-Pb in the general population amounted to 31 pg/L and 95% percentyles to 70 pg/ L in women and 90 pg/ L in men Thus, the persons responsible for occupational hygiene must keep in mind that B-Pb, rather than A-Pb
3
Content available Tetrachlorek węgla
PL
Tetrachlorek węgla (CCl4) jest przezroczystą, bezbarwną cieczą o charakterystycznym zapachu zbliżonym do zapachu eteru. Jest substancją niepalną. W przeszłości był szeroko stosowany jako rozpuszczalnik do prania na sucho. Obecnie został całkowicie zastąpiony przez rozpuszczalniki mniej toksyczne. Jest wykorzystywany głównie do produkcji fluorowodorów stosowanych jako gaz napędowy w pojemnikach z aerozolami, do produkcji pianek z tworzyw sztucznych oraz w gaśnicach. Według danych Instytutu Medycyny Pracy w Łodzi z 2001 r., w Polsce nie było osób narażonych na tetra chlorek węgla o stężeniach powyżej wartości NDS. Ostre lub przewlekłe zatrucia CCl4 drogą pokarmową powodowały wzrost stężeń enzymów w surowicy, nudności, anoreksję, wymioty, bóle brzucha, biegunki, żółtaczkę, powiększenie i stłuszczenie wątroby, zaburzenia czynności nerek, drgawki, zaburzenia wzroku, krwawienia, śpiączkę oraz zejścia śmiertelne. W przypadku przewlekłych zatruć CCl4 narządem docelowym jest wątroba. Dane literaturowe wskazują, że uszkodzenia wątroby są spowodowane powstawaniem w trakcie metabolizmu CCl4 reaktywnych rodników trichlorometylowego (CCl3) i trichlorometylowego rodnika ponadtlenkowego (CCl3O2 -), których powstawanie jest katalizowane przez mikrosomalny cytochrom P-450. Przyjmuje się, że działanie toksyczne wynika z wiązania wolnych rodników z hepatocytami znajdującymi się w środkowej części zrazika, co z kolei początkuje peroksydację lipidów i śmierć komórki. W odpowiedzi na uszkodzenie komórek miąższowych może nastąpić stymulacja komórek otaczających miejsce uszkodzenia. Związek ten wpływa także na czynność nerek oraz działa depresyjnie na ośrodkowy układ nerwowy. Istnieją wystarczające dowody działania rakotwórczego tetrachlorku węgla u zwierząt doświadczanych. Jednakże działanie genotoksyczne CCl4 było słabe lub wręcz go nie było, szczególnie w komórkach ssaków in vivo. W związku z tym można przyjąć, że działanie rakotwórcze u gryzoni, stwierdzane tylko tam, gdzie występowało działanie toksyczne, było skutkiem wzrostu proliferacji komórek w odpowiedzi na uszkodzenia i że dawki niepowodujące działania cytotoksycznego nie wpływają na wzrost ryzyka działania rakotwórczego. Wartości normatywów higienicznych tetrachlorku węgla przyjęte w różnych państwach wykazują duże zróżnicowanie: od 3,2 mg/m3 w Niemczech do 65 mg/m3 wg OSHA w USA oraz w Rosji i w Austrii). Trudno określić przyczynę takiego zróżnicowania, gdyż nie ma wątpliwości, że narządem docelowym działania toksycznego tetrachlorku węgla jest wątroba, a podstawowe prace dotyczące toksycznego działania CCl4 opublikowano głównie w latach 1950-90. Za podstawę wartości NDS przyjęto wyniki badań Adamsa i wsp. (1952), w których szczury poddawano narażeniu inhalacyjnemu na CCl4 o szerokim zakresie stężeń - 32÷2520 mg/m3. W wyniku eksperymentu trwającego 202 dni (137 narażeń 5 dni w tygodniu, 7 h dziennie), podczas którego szczury poddawano narażeniu inhalacyjnemu na CCl4 o stężeniu 160 mg/m3, nie stwierdzono szkodliwego wpływu CCl 4 na wątrobę. U szczurów narażanych na stężenie 320 mg/m3 stwierdzono marskość wątroby niewielkiego stopnia. Przyjmując stężenie 160 mg/m3 za NOAEL i odpowiednie współczynniki niepewności, zaproponowano wartość NDS równą 20 mg/m3. W związku z tym, że u ludzi narażanych przez 180 min na CCl4 o stężeniu 70 mg/m3 nie stwierdzano żadnych skutków działania CCl4, a 70-minutowe narażenie na stężenie 308 mg/m3 spowodowało jedynie zmniejszenie stężenia żelaza w surowicy krwi w okresie 20÷44 h po narażeniu (Stewart i in. 1961), nie proponuje się określania wartości NDSCh.
EN
Carbon tetrachloride (CCl4) is a colorless, clear, nonflammable liquid with a characteristic ether-like odor. It may decompose upon heating to produce corrosive and toxic gases. Due to its toxic properties CCl4 is no longer used as a solvent. Liver is the target organ for carbon tetrachloride toxicity. Slight cirrhosis and fatty infiltration of the liver occurred as a result of chronic inhalation exposure (187 days, 134 days of exposure) of rats to 320 mg/m3 of carbon tetrachloride. NOAEL amounted to 160 mg/m3. CCl4 toxicity is due to biotransformation of the solvent into a free radical (CCl3) and other reactive metabolites by the hepatic cytochrome P-450 system and, particularly, by P4502E1. The toxicity of carbon tetrachloride is increased by alcohol ingestion. Carbon tetrachloride was classified by IARC as possibly carcinogenic to humans (Group 2B). Results of animal experiments suggested a common biological mechanism, cell death and regeneration. CCl4 is not genotoxic. Inhalation unit risk amounts to 1.5 E-5. There is evidence that CCl4 is fetotoxic but not teratogenic. Based on the NOAEL value from an inhalation study in rats a TWA value of 20 mg/m3 was proposed. . There are no bases for establishing OEL (STEL) or BEI values. The substance can be absorbed through skin.
4
Content available 3-(2,3-Epoksypropoksy)propen
PL
3-(2,3-Epoksypropoksy)propen (eter allilowo-glicydowy, EAG) jest bezbarwną cieczą o charakterystycznym, nieprzyjemnym zapachu podobnym do zapachu aldehydów, stosowaną głównie jako związek pośredni do syntezy żywic, a ponadto jako stabilizator związków chlorowanych, żywic winylowych i kauczuku. Główną populacją osób narażonych na 3-(2,3-epoksypropoksy)propen są pracownicy zatrudnieni przy produkcji tego związku. 3-(2,3-Epoksypropoksy)propen został sklasyfikowany jako substancja szkodliwa oraz jako substancja uczulająca. 3-(2,3-Epoksypropoksy)propen wchłania się głównie w drogach oddechowych w postaci par i w postaci ciekłej przez nieuszkodzoną skórę. W wyniku narażenia ostrego i przewlekłego na 3-(2,3-epoksypropoksy)propen u ludzi występują głównie objawy działania drażniącego na układ oddechowy oraz przypadki zapalenia skóry i uczuleń, podrażnienia błon śluzowych, oczu i gardła. Na podstawie wyników badań doświadczalnych na zwierzętach stwierdzono, że 3-(2,3-epoksypropoksy)propen nie wykazuje działania embriotoksycznego, teratogennego i nie wpływa na rozrodczość zwierząt doświadczalnych. Na podstawie wyników uzyskanych z badań przeprowadzonych w warunkach in vitro na pro- i eukariotycznych organizmach wykazano, że 3-(2,3-epoksypropoksy)propen ma działanie mutagenne i genotoksyczne. W celu ustalenia wartości najwyższego dopuszczalnego stężenia (NDS) 3-(2,3-epoksypropoksy)propenu uwzględniono wyniki 2-letniego doświadczenia inhalacyjnego przeprowadzonego na szczurach i myszach obu płci. Wartość NDS wyliczona z wartości LOAEL równej 23,5 mg/m3 wynosi 6 mg/m3. Za wartość najwyższego dopuszczalnego stężenia chwilowego (NDSCh) 3-(2,3-epoksypropoksy)propenu zaproponowano przyjęcie stężenia równego 12 mg/m3, a ponieważ substancja działa uczulająco oznaczono ją literą „A”.
EN
Allyl glycidyl ether (AGE) is a colorless, flammable liquid with a characteristic, but not unpleasant, aldehyde-like odor. The primary use of AGE is as a reactive diluent and as a resin intermediate. It is also employed as a stabilizer of chlorinated compounds, vinyl resins, and rubber. The predominant sign of intoxication after oral administration was depression of the central nervous system. A single topical or repeated application to intact rabbit skin produced moderate local irritation. Liquid AGE instilled into the eyes of rabbits produced severe but reversible conjunctivitis, iritis, and corneal opacity. Exposure to AGE caused slight respiratory distress. At necropsy, the lungs showed bronchopneumonia, emphysema, bronchiectasis, pneumonitis, and hemorrhage. Other findings were mottled discoloration of the liver and enlarged adrenal glands. Dermatitis, consisting of itching, swelling, and blister formation, and sensitization have been reported by workers exposed to AGE vapor and/or liquid. AGE is genotoxic, mutagenic but not fetotoxic or teratogenic. Based on the LOAEL value from an inhalation study in rats and mice a TWA value of 6 mg/m3 was proposed. A STEL value of 12 mg/m3 and “A” notation (sensitising substance) are recommended.
PL
Sulfotep jest bladożółtą cieczą o zapachu czosnku. Jest to pestycyd fosforoorganiczny stosowany w szklarniach w celu zwalczania mszyc, drobnych pająków i innych owadów. W Polsce nie jest produkowany. Insektycyd ten wchłania się do organizmu człowieka drogą oddechową, pokarmową oraz przez skórę. W warunkach przemysłowych drogami narażenia są głównie droga oddechowa i skóra. Zgodnie z rozporządzeniem ministra zdrowia z dnia 3 lipca 2002 r. w sprawie wykazu substancji niebezpiecznych wraz z ich klasyfikacją i oznakowaniem, sulfotep jest klasyfikowany jako substancja bardzo toksyczna, której przypisano symbol T+ i oznaczono ją symbolem R27/28, co oznacza, że substancja działa bardzo toksycznie w kontakcie ze skórą i po połknięciu. Objawami zatrucia ostrego i przewlekłego sulfotepem u ludzi i zwierząt jest zahamowanie aktywności cholino- esterazy osocza, acetylocholinoesterazy erytrocytów i mózgu oraz zespół objawów charakterystycznych dla zatrucia związkami fosforoorganicznymi. Mechanizm działania toksycznego sulfotepu wynika z hamowania przez ten związek aktywności esterazy acetylocholinowej (AChE), co w konsekwencji prowadzi do nadczynności układu cholinergicznego. Sulfotep nie wykazuje działania mutagennego, embriotoksycznego, teratogennego i rakotwórczego. Wartość NDS sulfotepu w powietrzu na stanowisku pracy ustalono na podstawie wyników 12-tygodniowego badania inhalacyjnego na szczurach, w których wyznaczono wartość NOAEL na poziomie 1,94 mg/mJ. Wyliczoną na podstawie wyników tych badań wartość NDS równą 0,158 mg/mJ postanowiono zmniejszyć do 0,1 mg/m3, tj. do wartości, jaką ustalono w Unii Europejskiej. Wartość ta powinna zabezpieczyć przed wystąpieniem skutków długotrwałego narażenia na sulfotep (głównie zmniejszeniu aktywności cholinoesteraz) w warunkach narażenia zawodowego. Podobnie jak w Unii Europejskiej, tak i w innych państwach proponuje się nie- ustalanie wartości NDSCh. Zgodnie z zaleceniami WHO (1982) proponuje się natomiast ustalenie wartości DSB, tj. obniżenie aktywności acetylocholinoesterazy w krwinkach czerwonych do poziomu 70% aktywności wyjściowej. Ponadto związek należy oznaczyć literami Sk, ze względu na jego wchlanialność przez skórę.
EN
Sulfotep is a pale yellow, noncombustible liquid with a garlic odor. It is often used in greenhouse fumigant formulations for control of aphids, spider mites, whiteflies, and thrips. Sulfotep is an organophosphate pesticide whose toxicity is similar to that of paration. Poison by ingestion, skin contact and possibly other routes. Sulfotep is an organophosphate choline- 11640 sterase inhibitor; inhibited cholinesterase activity in the plasma, erythrocytes and in the brein. Sulfotep is highly toxic following oral administration and following dermal application. The lished dermal LD50 for rats is 65 mg/kg, and the oral LD50 for the rat is 5 mg/kg and 13,8 mg/kg. Based on the fact that inhalation of an aerosol concentration of 1, 94 mg/mJ of sulfotep administered to rats 6 hours/day, 5 days/week for 12 weeks failed to produce any adverse effects, a concentration 0,1 mg of sulfotep/m3 is proposed as a maximum exposure limit (maximum allowable concentration). Because sulfotep has been shown to penetrate the skin in amounts sufficient to induce systemic toxicity, the skin notation is considered appropriate. At this time, no STEL is recommended until additional toxicological data.
PL
Selan jest gazem o charakterystycznym zapachu zgniłej rzodkwi. Jest stosowany do produkcji selenków i związków selenoorganicznych oraz jako składnik mieszaniny do produkcji półprzewodników. Narażenie na selan ma miejsce w procesach oczyszczania selenu i podczas produkcji farb na bazie selenianów i seleninów.Dotychczas w Polsce ustalono wartości normatywów higienicznych selenu i jego związków na poziomie: war¬tość NDS - 0,1 mgSe/mJ i wartość NDSCh - 0,3 mgSe/mJ, nie wyłączając selenowodoru. W państwach Unii Europejskiej i w USA ustalono wartości normatywów higienicznych dla selanu niezależnie od wartości NDS zaproponowanych dla selenu i innych jego związków. Jest to spowodowane tym, że selenowodór występuje w postaci gazowej, natomiast takie związki selenu, jak: seleniany, seleniny i selenki są to substancje stałe.Selan jest substancją bardzo toksyczną. Wartości LC50 selanu wyznaczone na podstawie wyników badań na świnkach morskich podczas 1-, 4- lub 8-godzinnego narażenia wynoszą odpowiednio: 12,7; 9 i 1 mgSe/mJ.Efektem krytycznym działania par selanu u ludzi jest działanie drażniące na błony śluzowe układu oddechowego, oczy i skórę oraz zaburzenia ze strony układu pokarmowego. Działanie drażniące przejawia się kaszlem, katarem, bólem gardła, trudnościami w oddychaniu, uczuciem pieczenia w klatce piersiowej, skurczem oskrzeli, a także może wystąpić zapalenie płuc i obrzęk płuc poprzedzony kilkugodzinnym okresem latencji. U narażonych stwierdzano ponadto zaczerwienienie i ból oczu, łzawienie i zapalenie skóry, a także zaburzenia ze strony układu pokarmowego (nudności i wymioty) oraz ogólne osłabienie.U pracowników laboratorium narażonych na selenowodór o stężeniu 0,67 mg/m3 stwierdzono zaburzenia ze strony układu pokarmowego (nudności i wymioty), osłabienie oraz metaliczny smak w ustach. Według National Institute of Occupational Safety and Health w USA wartość stężenia, stwarzającego natychmiastowe zagrożenie dla zdrowia i życia (IDLH) wynosi 3,2 mg/m3. U 21-letniej studentki, zatrudnionej w laboratorium badawczym i narażonej na selenowodór o nieznanym stężeniu przynajmniej raz w tygodniu przez rok - obserwowano: przewlekłe biegunki, bóle brzucha, zapach czosnku w powietrzu wydychanym, a także ostrą próchnicę zębów. Badana uskarżała się na łzawienie oczu i chroniczny nieżyt nosa. Autorzy dokumentacji proponują przyjąć stężenie 0,67 mg/mJ za wartość LOAEL dla selenowodoru i wyznaczyć wartość NDS, przyjmując następujące współczynniki niepewności: współczynnik związany z wrażliwością osobniczą człowieka równy 2, współczynnik związany z przejściem z badań krótkoterminowych do przewlekłych równy 2 oraz współczynnik równy 3, w razie stosowania wartości LOAEL zamiast wartości NOAEL.Na podstawie powyższego wyliczenia, przyjęto wartości normatywów higienicznych selanu na poziomie: wartość NDS - 0,05 mg/m3 i wartość NDSCh - 0,1 mg/mJ (2 x wartość NDS ze względu na działanie drażniące związku). Nie ma podstaw' do ustalenia wartości DSB selanu.
EN
Hydrogen selenide is a non-metallic compound currently receiving attention in both medicine and electronics. Hydrogen selenide is extremely flammable. Toxicity results in multiple symptoms, the most characteristic of which is a garlicky odor of the breath.A single inhalation concentration LC50 of hydrogen selenide is reported to be between 1 and 12,7 mg/mJ for 1- and 8-hour exposure. A young woman exposed repeatedly to hydrogen selenide gas developed gastrointestinal complaints, dental caries, conjuctivitis, nail deformi¬ties, and garlicky breath. Five cases of subacute intoxication from less than 0,67 mg/mJ of hydrogen selenide probably generated from the use of selenious acid have been reported. Gastrointestinal distress, dizziness, increased fatigue, moderate eye and nasal irritation and a metallic taste in the mouth were reported.The LOAEL (lowest observed adverse effect level) of 0,67 mg/m3 was adopted. Given these data, the 8-hour TWA value is 0,05 mg/m3, and the STEL value is 0,1 mg/m3.
PL
Światowa produkcja DMF w 1995 r. wynosiła około 500 tys. ton. W Stanach Zjednoczonych, gdzie produkcja DMF w 1987 r. przekroczyła 250 tys. ton, liczba osób narażonych na ten związek wynosiła około 120.000 osób. W Polsce dokładna liczba osób narażonych na DMF nie jest znana. W 1995 r. w jednym z zakładów produkujących sztuczną skórę liczba narażonych zawodowo na ten związek wynosiła około 300 osób, w tym 50 osób narażonych na związek o stężeniach przekraczających dotychczas obowiązującą wartość NDS, tj. 10 mg/m3. Zgodnie z dyrektywą nr 92/32/EEC należy zaliczyć DMF do grupy związków szkodliwych. Na podstawie wyników badań na zwierzętach doświadczalnych nie stwierdzono, aby związek ten wykazał działanie drażniące czy uczulające; nie wykazano również jego działania rakotwórczego i teratogennego. W licznych testach in vitro i in vivo wykazano brak działania genotoksycznego związku. DMF w dużych dawkach wykazuje działanie hepatotoksyczne, które stwierdzono u wielu gatunków zwierząt po podaniu związku różnymi drogami i w różnym czasie. Obserwowano nasilanie się skutków działania hepatotok- sycznego DMF w zależności od stosowanych dawek. DMF ulega wchłanianiu w postaci par w drogach oddechowych i przez skórę. W badaniach eksperymentalnych na ochotnikach retencja DMF w płucach wynosiła około 90%. Ciekły DMF naniesiony na skórę wchłania się bardzo szybko, a wyznaczony u ludzi współczynnik wchłaniania wynosi 9 mg/cm2/h. Za efekt krytyczny działania tego związku przyjęto działanie układowe na wątrobę. W celu obliczenia i ustalenia wartości NDS przyjęto wartość NOEL dla szczurów w warunkach 2-letniego narażenia inhalacyjnego, która wynosiła 75 mg/m3. Po uwzględnieniu powyższych danych zaproponowano utrzymanie dotychczasowej wartości 10 mg/mJ jako wartości NDS DMF. Wyliczona wartość NDS związku powinna zapobiec skutkom zdrowotnym długotrwałego narażenia na DMF w warunkach narażenia zawodowego. Proponujemy ponadto przyjąć wartość DSB, podobnie jak w Niemczech i USA, gdzie wymagane jest oznaczanie w moczu jednego z głównych metabolitów DMF /V-metyloformamidu (NMF). Obowiązująca w Niemczech wartość NDS DMF wynosi 30 mg/m3, a wartość DSB - 15 mg /V-metyloforma- midu/1 moczu. Ze względu na prostoliniową zależność stężenia A^metyloformamidu w moczu od stężenia DMF w powietrzu, po odpowiednim przeliczeniu dla wartości proponowanego przez nas NDS (10 mg/mJ) DSB w Polsce powinno wynosić 5 mg NMF/1 moczu. Ze względu na duże wchłanianie DMF przez skórę w postaci ciekłej i w postaci par, proponujemy dodatkowe oznaczenie literami Sk. Nie ma podstaw do ustalenia wartości NDSCh N,N -dimetyloformamidu.
EN
Dimethylformamide (DMF) is a colourless and hygroscopic liquid with a faint odour of amines. It is mainly used as a liquid and gas solvent in organic synthesis in the process of producing low - and high-molecular vinyl and acryl polymers, foil, fibres and coatings. IN 1995, the world production of DMF was about 500,000 tons. In the USA, where in 1987 DMF production exceeded 250,000 tons, about 120,000 people were exposed to this compound. In Poland the exact number of people exposed to DMF is unknown. In 1995, in one of the plants producing artificial leather, about 300 workers were occupationally exposed to this compound. 50 of them were exposed to concentrations exceeding the so far obligatory TLV value (10 mg/m3). According to European Union instruction No. 92/32/EEC DMF should be included in the group of harmful compounds. On the basis of the results of investigations on laboratory animals the compound does not demonstrate irritating, sensitizing, carcinogenic or teratogenic effect. In numerous in vitro and in vivo tests the compound showed no genotoxic effect. In high doses DMF reveals hepatotoxic effect observed in many animal species after administration of the compound in various ways and at different times. Intensification of DMF hepatotoxic effect was found depending on the applied doses. DMF is absorbed in the form of vapours in the airways and through skin. In experimental studies on volunteers, DMF retention in lungs w'as about 90%. Liquid DMF applied on skin is absorbed very quickly and the determined in humans absorption coefficient is 9 mg/cm2/h. Systemic activity on liver has been assumed to be critical effect of the compound. To calculate and establish a TLV value the NOEL value of 75 mg/m for rats in the condition of 2-year inhallatory exposure was ac¬cepted. Taking into consideration the above data, the so far used value 10 mg/nr’ has been suggested to be retained as a TLV value for DMF. The calculated TLV value of the compound should prevent health effects of long-term exposure to DMF in occupational exposure. Moreover, we suggest accepting a BEI value, like in Germany and the USA, where determination of iV-methylformamide (one of main DMF metabolites) in urine is required. In Germany, the obligatory TLV value for DMF is 30 mg/mJ and the BEI value is 15 mg /V-met- hylformamide/1 of urine. Due to rectilinear dependence of //-methylformamide urine concen¬tration on DMF concentration in the air after adequate calculation for the suggested by us TLV value (10 mg/nr’), the BEI value in Poland should be 5 mg NMF/1 of urine. Considering high DMF skin absorption in the liquid and vapour form we suggest an additional determina¬tion with letters Sk. There are no bases for establishing a STEL value.
PL
Fenol jest związkiem o szerokim zastosowaniu; stosuje się go jako surowiec do produkcji takich ważnych substancji, jak: żywice, kaprolaktam, alkilofenole, ksylenole i anilina. Jest stosowany również jako środek dezynfekujący w sanitarnych środkach czyszczących, a także w takich preparatach medycznych, jak: maści, krople do czu i nosa, płyny do płukania ust czy płyny antyseptyczne. Narażenie zawodowe na fenol występuje głównie podczas stosowania żywic fenolowych. Są one wykorzystywane jako materiał wiążący w materiałach izolacyjnych, płytach wiórowych, farbach oraz jako składnik mas formierskich. Fenol może ulegać wchłanianiu przez płuca, z przewodu pokarmowego i przez skórę, w tym także w postaci par. Retencja par fenolu w płucach wynosi u ludzi około 60-80%. Obliczony współczynnik wchłaniania par fenolu przez skórę wynosi 0,35/h, co oznacza, że w ciągu godziny ulega wchłonięciu ilość fenolu zawarta w 0,35 mJ powietrza. Szybkość wchłaniania fenolu przez skórę z roztworów wodnych wynosiła 0,08 h 0,3 mg/cm2/h w zakresie stężeń 2,5-10 g/l. Główną drogą przemiany fenolu u ludzi jest sprzęganie z kwasem siarkowym i glukuronowym. Półokres wydalania fenolu w moczu po narażeniu inhalacyjnym wynosi około 3,5 h. W dostępnym piśmiennictwie istnieje duża liczba informacji na temat zatruć ostrych u ludzi, nie ma natomiast wyników badań, które mogłyby stanowić podstawę określenia wartości NDS. Narażenie małp, szczurów i myszy na pary fenolu o stężeniu 19 mg/m3 w sposób ciągły przez 90 dni nie spowodowało zmian histopatologicznych w nerkach, wątrobie mózgu i sercu zwierząt. Wyniki badań biochemicznych i hematologicznych nie różniły się od wyników uzyskanych w grupie kontrolnej, dlatego wartość tę uznano za wartość NOAEL dla narażenia drogą inhalacyjną. Nie stwierdzono zmian histologicznych w wyniku podawania w wodzie pitnej szczurom i myszom fenolu o stężeniach, odpowiednio: 2500 i 5000 mg/l. Podawanie fenolu dożołądkowo w dawkach jednorazowych, w roztworze wodnym, w okresie od 1 dnia do 14 dni powodowało wystąpienie skutków działania związku na nerki, wątrobę, płuca oraz działanie neurotoksyczne, gdy dawki fenolu przekraczały 40 mg/kg/dzień. U.S. EPA przyjęła dawkę 60 mg/kg/dzień za wartość NOAEL fenolu dla działania na potomstwo. Wartość RD50 określono na podstawie wyników badań na myszach na poziomie 624 mg/m3. Fenol wykazuje silne działanie drażniące na skórę. W miejscu kontaktu występowało: zaczerwienienie, stany zapalne, wypryski i martwica skóry. Międzynarodowa Agencja Badań nad Rakiem (IARC) stwierdziła w 1999 r., że dowody działania rakotwórczego fenolu u ludzi i zwierząt są niewystarczające i zaliczyła związek do grupy 3. (czynnik niemożliwy do klasyfikacji z punktu widzenia działania rakotwórczego u ludzi). Istniejące wartości NDS fenolu w różnych państwach mieszczą się w zakresie od 4 do 19 mg/m3. W części państw przyjęto wartości NDSCh fenolu, stanowiące dwukrotną wartość NDS. We wszystkich państwach stosuje się oznakowanie, wskazujące na wchłanianie związku przez skórę. Po przyjęciu za wartość NOAEL fenolu dla narażenia inhalacyjnego stężenia par fenolu w powietrzu na poziomie 19 mg/m3, zaproponowano przyjęcie za wartość NDS fenolu stężenie na poziomie 7,8 mg/m3. Brak podstaw do ustalenia wartości NDSCh fenolu. Proponuje się wprowadzenie oznakowania związku literami Sk i C.
EN
Phenol is a white crystalline solid. Its major use is a feedstock for phenolic resins, caporo- lactam, xylenoles aniline. Some medical and pharmaceutical applications are also known. Occcupational exposure to phenol may occur during the production of phenol and its products, during the application of phenolic resins in wood and iron/steel industries and during other industrial activities.Phenol is readily absorbed by all routes of exposure. The retention of phenol vapors in lungs amounts to about 60 - 80 %. The rate of penetration of phenol through skin is from 0,08 to 0,3 mg/cm2/h. Absorbed phenol mainly conjugates with glucuronic and sulfuric acid and, to a lesser extent, hydroxylates into catechol and hydroquinone. Half-time of excretion of phenol in urine after inhalation exposure amounts to 3,5 h. A wide range of acute effects has been reported following human exposure to phenol by dermal, oral or intravenous routes. Adequate human data on the effects of chronic inhalation exposure are not available. In rats, mice and monkeys exposed continuously to phenol for 90 days, an inhalation NOAEL of 19 mg/m' was reported, based on kidney, liver, brain and hearth effects. In a 14-day study in rats, an oral NOAEL of 12 mg/kg/day was reported, based on kidney effects. At 40 mg/kg/day, the pathological changes in the kidneys included two animals with tubular de-generation in the papillar region, and one with protein casts in the tubules. According to the U.S. EPA the NOAEL for reproductive effects amounts to 60 mg/kg/day. Solutions of phenol are corrosive to skin and eyes. Phenol vapors can irritate the respiratory tract. RD50 of 624 mg/mJ has been reported in mice. The evidence for the carcinogenicity of phenol in laboratory animals was considered by the IARC to be inadequate. Time weighted average occupational exposure limits in different countries is from 4 to 19 mg/nr1. Based on NOAEL value from inhalation study in rats the TWA value of 7,8 mg/m'’ was proposed. No STEL value has been proposed. Substance is corrosive and can be absorbed through skin.
PL
Benzenotiol jest białą lub jasnożółtą cieczą o zapachu czosnku. Jest stosowany w przemyśle chemicznym i farmaceutycznym do syntezy wielu związków chemicznych, w tym leków. W procesach syntezy organicznej jest stosowany jako rozpuszczalnik. Jest substancją czynną herbicydów i insektycydów. Benzenotiol wchłania się do organizmu człowieka drogami oddechowymi, drogą pokarmową oraz przez skórę. W warunkach przemysłowych drogami narażenia są głównie droga oddechowa i skóra. Zgodnie z rozporządzeniem ministra zdrowia z dnia 11 lipca 2002 r. w sprawie kryteriów i sposobu klasyfikacji substancji i preparatów chemicznych (DzU nr 140, poz. 1172) substancja jest klasyfikowana jako łatwo palna (R10) i toksyczna z przypisanymi zwrotami określającymi zagrożenie: działa toksycznie przez drogi oddechowe, w kontakcie ze skórą i po połknięciu (R23/24/25). Objawami zatrucia ostrego i przewlekłego benzenotiolem u ludzi i zwierząt jest działanie drażniące na oczy i skórę. U zwierząt doświadczalnych stwierdzono poważne uszkodzenie rogówki z upośledzeniem widzenia. Wartość NDS benzenotiolu w powietrzu na stanowisku pracy ustalono przez analogię do merkaptanu etylu, tj. na poziomie 2,0 mg/m³. Zaproponowana wartość NDS powinna zabezpieczyć przed działaniem drażniącym w warunkach narażenia zawodowego. Zaproponowano nieustalanie wartości NDSCh benzonotiolu. Ze względu na fakt, że substancja wchłania się przez skórę (LD50s – 134 mg/kg) proponuje się oznakowanie jej literami „Sk”.
EN
Benzenethiol is a colorless liquid with an offensive, garlic-like odor. An odor threshold of 0,00094 ppm has been reported. It is flammable and a dangerous fire risk. Benzenethiol is used as a chemical intermediate, solvent, and mosquito larvicide. Benzenethiol has caused irritation of the mucous membranes of the lips, mouth, and nose in humans and animals. Benzenethiol can cause severe dermatitis, headaches, and dizziness. The MAC of 2 mg/mJ is based on analogy with a similar but more toxic compound, ethyl mercaptan. This limit would protect workers from significant risks of CNS effects, other systemic injuries, and skin irritation potentially associated with exposure to benzenethiol above the MAC. At this time, there are no bases for establishing a STEL Considering benzenethiol skin absorption in the liquid and vapour form we suggest additional notation (Sk).
PL
2-Fenylopropen (alfa-metylostyren, AMS) jest bezbarwną cieczą o charakterystycznym zapachu. AMS jest otrzymywany przez katalityczną alkilację benzenu propylenem lub przez odwodornienie kumenu. Stosowany jest jako monomer przy produkcji specyficznych polimerów i żywic, gdzie też głównie występuje narażenie na ten związek. Nie ma danych klinicznych oraz epidemiologicznych na temat toksyczności AMS u ludzi. Jedyne badania na ludziach (4 ochotnikach) dotyczyły wrażliwości węchowej. Ograniczone dane wskazują, że próg wyczuwalności węchowej u ludzi leży poniżej 50 mg/m³. Po kilkuminutowym narażeniu inhalacyjnym na 2-fenylopropen o stężeniu 241 mg/m³ (50 ppm) stwierdzono wyczuwalny zapach, bez działania drażniącego, a po narażeniu na związek o stężeniu 482 mg/m³ (100 ppm) odnotowano silny zapach, lecz niewywołujący jeszcze wyraźnego dyskomfortu. Wartość LD50 AMS (per os) dla samców szczurów wynosi 4900 mg/kg. Związek AMS wykazuje umiarkowane działanie drażniące na oko oraz skórę królików. U szczurów, świnek morskich, królików i małp narażonych inhalacyjnie na AMS o stężeniu 964 mg/m³ (200 ppm), 7 h/dobę, 5 dni w tygodniu przez 197 dni nie obserwowano żadnych skutków, natomiast po narażeniu na AMS o stężeniu 2892 mg/m³ (600 ppm) padła część królików, a u szczurów i świnek morskich obserwowano nieznaczne zmiany masy wątroby i nerek, natomiast u małp zmian tych nie stwierdzono. Najbardziej czułym skutkiem, który u ludzi prawdopodobnie nie występuje, są nefropatie hialinowe zaobserwowane wyłączne u samców szczurów. Próg dla tego rezultatu wynosi 250 ppm (1205 mg/m³) po narażeniu 6 h/dobę, 5 dni w tygodniu przez 9 dni. Charakterystyczne, że narażenie na AMS o większych stężeniach nie pozwoliło autorom na zaobserwowanie, pomimo padnięć zwierząt, zmian biochemicznych ani histopatologicznych, a stwierdzili jedynie zmiany masy ciała i zmiany masy niektórych narządów. Nieliczne dane wskazują, że AMS może działać mutagennie. Brak danych na temat innych skutków odległych. W większości państw dla AMS przyjęto wartość NDS na poziomie 242 mg/m³, co według ACGIH powinno zabezpieczyć pracowników przed działaniem drażniącym związku. Na podstawie dostępnych wyników badań stwierdzono, że próg działania drażniącego AMS u ludzi (100 ppm) jest niższy niż próg efektów toksycznych u zwierząt doświadczalnych (600 ppm). Przyjmując wartość stężenia AMS na poziomie 200 ppm (964 mg/m³) za wartość NOAEL – po którym to stężeniu po narażeniu przewlekłym u kilku gatunków zwierząt nie obserwowano żadnych skutków, a także dwa współczynniki niepewności (A = 2, współczynnik związany z różnicami wrażliwości osobniczej u ludzi; B = 2, współczynnik związany z różnicami wrażliwości międzygatunkowej) o łącznym iloczynie równym 4, otrzymano wartość NDS na poziomie 240 mg/m³. Proponowana wartość NDS jest identyczna z obowiązującą w większości państw oraz około pięciokrotnie większa od wartości NDS przyjętej w Polsce dla styrenu (50 mg/m³). Za wartość NDSCh 2-fenylopropenu proponuje się przyjąć arbitralnie wartość 480 mg/m³.
EN
2-Phenylpropene (alpha-methylstyrene, AMS) is a colourless liquid with a characteristic odour. It is obtained through catalytic alkylation of benzene by propylene or by dehydrogenation of cumene. It is used as a monomer in the production of specific polymers and resins; since that is where exposure mainly occurs. There are no clinical or epidemiological data on the toxicity of AMS in humans. The only data on humans (4 volunteers) were aimed at odour sensitivity. Limited information indicates that the threshold of odour perceptibility in humans is below 50 mg/nr3. Following exposure by inhalation lasting for several minutes at a concentration of 241 mg/m3 (50 ppm) odour perceptibility was observed, with no irritation; at a concentration of 482 mg/m3 (100 ppm), a strong odour was noted, with no definite discomfort. The LD50 (per os) for male rats was established at 4900 mg/kg. AMS exerts moderate irritation of the eye and In rats, guinea pigs, rabbits and monkeys exposed by inhalation at a concentration of AMS of 964 mg/m3 (200 ppm) 7 hrs a day, 5 days a week for 197 days, no effects were noted whereas at a concentration of 2892 mg/m3 (600 ppm) a certain number of rabbits died, and in rats as well as in guinea pigs slight changes were noted of liver and kidneys weight; no effects were found in monkeys. The most sensitive effect, which probably does not occur in humans, was hyaline droplet nephropathy, only found in male rats. This occurs at a threshold of 250 ppm (1205 mg/m3) following exposure 6 hrs per day, 5 days a week for 9 days. It is characteristic that the authors were unable to find any biochemical or histopathological alterations although at the higher concentration some animals (mice, rabbits) died. Scarce data indicate that AMS may act as a mutagen. There is no data on other remote toxic effects. From the available data it follows that the threshold of irritation in humans (100 ppm) is lower than the threshold in animals (600 ppm). Assuming that the concentration of 200 ppm may be accepted as NOAEL (as there were no effects in several animal species) and introducing 2 uncertainty factors (A = 2 accounting for differences in human susceptibility, and B = 2 to account for interspecies extrapolation) with a product of 4 the MAC (TWA) value equals 240 mg/m3. The above value of MAC (TWA) is identical with that accepted in most countries. At the same time it is higher by a factor of 5 from the value of MAC (TWA) for styrene in Poland 50 mg/m3. An arbitrary value of 480 mg/m3 was accepted as the MAC (STEL), (short term exposure).
PL
Etylenodiamina (EDA) jest gęstą, bezbarwną cieczą o słabym amoniakalnym zapachu. Stosowana jest głównie jako półprodukt do otrzymywania związków chelatujących, fungicydów, wosków syntetycznych, żywic poliamidowych i środków antykorozyjnych oraz jako emulgator i stabilizator gumy. EDA u ludzi wykazuje, w zależności od stężenia, działanie drażniące na błony śluzowe - od umiarkowanego do silnego. Zgodnie z kryteriami toksyczności obowiązującymi w Unii Europejskiej EDA należy do związków szkodliwych. Pary etylenodiaminy mają działanie drażniące na oczy i błony śluzowe oraz drogi oddechowe zwierząt doświad¬czalnych, natomiast ciekła EDA ma działanie żrące na skórę i oko królika. W doświadczeniu przewlekłym przeprowadzonym na szczurach eksponowanych drogą inhalacyjną na EDA o dużych stężeniach obserwowano zmiany patologiczne w wątrobie, nerkach, płucach i nadnerczach. Nie wykazano żadnych skutków szkodliwego działania tego związku o stężeniu 147,5 mg/mJ, które przyjęto za wartość NOEL. Na podstawie wyników badań na zwierzętach nie stwierdzono działania rakotwórczego, teratogennego, embriotoksycznego EDA ani też wpływu na rozrodczość. Za podstawę ustalenia wartości NDS przyjęto układowe działanie toksyczne etylenodiaminy. Do obliczenia proponowanej wielkości NDS przyjęto wartość NOEL, uzyskaną na podstawie wyników badań na zwierzętach doświadczalnych, stosując następujące współczynniki niepewności: A = 2 - współczynnik wrażliwości osobniczej; B = 2 - różnice międzygatunkowe oraz droga podania; C = 2 - przeniesienie z badań 30-dniowych na badania przewlekłe; D = 1 - za podstawę obliczeń przyjęto wartość NOEL; E - współczynnik dotyczący oceny eksperta o kompletności danych oraz potencjalnych skutków odległych.
EN
Ethylenediamine is a thick clear liquid having the weak odour of ammonia. It is used as semiproduct to obtain chelating compounds, fungicides, synthetic waxes, polyamide resins and anticorrosive agents as well as emulsifier and rubber stabilizer. In human beings EDA demonstrates, dependently on concentration, moderate to strong irritating activity on nasal mucosa. In accordance with toxicity criteria currently in force in European Union, EDA belongs to harmful compounds. Ethylenediamine vapours have irritating action on eyes, mucosa and respiratory tract of experimental animals, however, liquid EDA has caustic effect on skin and eye of a rabbit. In a long-lasting experiment on rats exposed to EDA inhaled in high concen¬tration, pathological changes were observed in liver, kidneys, lungs and adrenal glands. No harmful effects were observed at the compound concentration of 147.5 mg/nr’. This concen¬tration was assumed to be the NOEL value. In studies on animals no EDA carcinogenic, teratogenic or embryotoxic activity was found nor any effect on reproduction. Systemic toxic effect of ethylenediamine was accepted as the base of MAC (TWA) value determination. NOEL value obtained on the basis of studies on experimental animals, was used for the suggested MAC (TWA) value calculation, applying the following uncertainty coefficients: A = 2 - individual sensitivity; B = 2 - interspecies differences and way of administration; C = 2 - shifting from 30-day study to long-lasting; D = 1 - for the base of NOEL value calculation = 1 was assumed; E - coefficient related to an expert’s evaluation on the data complexity and potential distant effects. Ethylenediamine MAC (TWA) value was suggested at the level 20 mg/m3 (the so far valid value: 2 mg/m3). Due to strong irritating action of EDA we suggest to establish the MAC (STEL) value at the level 2.5-fold higher than MAC (TWA) value, that is at the level of 50 mg/m3. Considering the fact that the value of LD5o determined after application on skin is lower than 1000 mg/kg we suggest to determine the substance with the symbol “Sk”. There are no sufficient grounds for the determination of ethylenediamine BEI value.
PL
Eter bis(2-chloroetylowy), (BCEE) jest bezbarwną, przezroczystą palną cieczą o zapachu zbliżonym do chloroformu. Słabo rozpuszcza się w wodzie, a dobrze w alkoholu, acetonie i benzenie; miesza się w różnych proporcjach z rozpuszczalnikami organicznymi. BCEE jest stosowany jako odczynnik w syntezach polimerów i związków organicznych, rozpuszczalnik tłuszczów, smarów, lakierów, farb, estrów celulozy oraz jako pestycyd i fumigant glebowy, niszczący owady.BCEE wywiera działanie drażniące na błony śluzowe górnych dróg oddechowych i spojówki. Wchłania się do organizmu w drogach oddechowych z przewodu pokarmowego lub przez nieuszkodzoną skórę, nawet w stopniu wystarczającym do spowodowania śmierci. Podany zwierzętom dożołądkowo ulega metabolizmowi do kwasu tiodiglikolowego, kwasu 2-chloro-octowego i /V-acetylo-S-[2-(2-chloroetoksy)]etylo-L-cysteiny. Największy odsetek podanej dawki (65%) ulega wydaleniu z moczem, a mniejszy (11,5%) z powietrzem wydychanym oraz z kałem (2,4%). Niewielkie depozyty (2,3%) po podaniu dożołądkowym tego związku stwierdzano po 48 h w tkankach zwierząt. BCEE wywiera działanie mutagenne na komórki bakterii i drożdży oraz indukuje recesywne mutacje letalne w komórkach płciowych samców Drosophila melanogaster. BCEE jest substancją kancerogenną dla zwierząt - podana do żołądka myszy wywołuje nowotwory wątroby (wątrobiaki). Nie prowadzono badań, oceniających rakotwórczość związku dla ludzi. Według klasyfikacji IARC eter bis(2-chloroetylowy) należy do grupy 3., tj. czynników nieklasyfikowalnych pod względem rakotwórczości. EPA zaklasyfikowała ten związek do grupy B2., tj. czynników, dla których istnieje wystarczający dowód rakotwórczości dla zwierząt i brak dowodu takiego działania dla ludzi. W Polsce BCEE nie został zamieszczony w wykazach czynników rakotwórczych ani też prawdopodobnie rakotwórczych dla ludzi.
EN
Bis(2-chloroethyl)ether (BCEE) is a colourless liquid with characteristic odour like chloro-form. BCEE is used as a solvent, pesticide and fumigant for insecticides. This chemical is readily absorbed from the gastrointestinal tract as well as by inhalation and dermally. BCEE is excreted in the urine (ca. 65% of per os dose), in the expired air (ca. 11.5% of dose) and in the faeces (ca. 2.4% of the dose). It is the mutagenic and carcinogenic agent inducing hepatomas in mice exposed orally. Carcinogenic classification - IARC, group 3, not classifiable as to carcinogenicity to humans. On the basis of the existing data about occupational exposure to BCEE in Poland, the Expert Group recommended a MAC value for this chemical of 10 mg/m3, STEL 30 mg/mJ and skin notation (Sk).
PL
Cykloheksanon jest bezbarwną, oleistą cieczą o zapachu przypominającym zapach acetonu i pieprzu z miętą. Jest otrzymywany w reakcji utleniania cykloheksanu lub odwodornienia fenolu. Około 95% jego produkcji wykorzystuje się do wytwarzania nylonu. Dane na temat toksyczności u ludzi są fragmentaryczne. Narażenie ostre charakteryzuje się drażniącym działaniem na oczy, nos i gardło. U dwóch osób stwierdzono senność i choroby nerek, jednakże osoby te były narażone także na inne związki. W grupie osób zatrudnionych ponad 5 lat stwierdzono zaburzenia czynności wątroby. W wypadku zwierząt cykloheksanon charakteryzuje się stosunkowo małą toksycznością ostrą (LD50 po podaniu dożołądkowym wynosi ok. 2 g/kg). Stwierdzano wpływ na ośrodkowy układ nerwowy (narkoza), działanie drażniące na oczy i skórę. Przy wielokrotnym podawaniu stwierdzano wpływ na OUN, wątrobę, nerki oraz działanie drażniące na spojówki. Wyniki uzyskane tylko w jednym badaniu nad działaniem rakotwórczym są niejednoznaczne. IARC zaklasyfikował cykloheksanon do grupy 3. Wykazano działanie mutagenne i genotoksyczne związku. Nie stwierdzono działania teratogennego, obserwowano jednak działanie embriotoksyczne i wpływ na rozrodczość. Cykloheksanon dobrze wchłania się przez skórę, drogi oddechowe i z przewodu pokarmowego. Główny szlak metaboliczny prowadzi do cykloheksanolu, który po sprzęgnięciu z kwasem glukuronowym jest wydalany z moczem. Stwierdzono wysoką korelację między stężeniem cykloheksanonu na stanowisku pracy a stężeniem cvkloheksanolu w moczu. Za podstawę proponowanej wartości NDS dla cykloheksanonu przyjęto skutki odległe, głównie wpływ tego związku na rozrodczość. Po narażaniu drogą inhalacyjną na cykloheksanon w stężeniu 2600 mg/m3, w okresie 9.-16. dnia ciąży stwierdzono zmniejszenie masy ciała zarówno u samic jak i płodów. Uzyskaną z tego doświadczenia wartość 2600 mg/m'’ przyjęto za LOAEL. Wartość NDS cykloheksanonu zaproponowana na podstawie przedstawionego efektu wynosi 40 mg/m , a wartość NDSCh - 80 mg/m3. Proponuje się oznaczyć związek na liście literami „Sk”. Zaproponowano również przyjęcie wartości DSB równej 5,0 mg cykloheksanolu/g kreatyniny w moczu.
EN
Cyclohexanone is a colourless oily liquid with an odour resembling acetone and peppermint. It is obtained through oxidation of cyclohexane or dehydrogenation of phenol. Approximately 95% of its manufacture is used for the production of nylone. Information on the toxicity in humans is fragmentary. Acute exposure is characterized by irritation of the eyes, nose and throat. In two persons drowsiness and renal impairment, were found however these workers were also exposed to other compounds. In a group of workers exposed for over five years hepatic disorders were found. In animals, cyclohexanone is characterized by relatively low acute toxicity (DL50 by intragastric administration is approximately 2 g/kg b.w.). Effects on the CNS were found (narcosis) as well as irritation of the eyes and skin. Following multiple administration effects were found in CNS, liver and kidneys as well as irritation of conjunctiva. A single experiment which aimed at carcinogenicity gave equivocal results. The IARC classi-fied cyclohexanone to group 3. Mutagenic and genotoxic effects were found. No teratogenic effects were detected, however there were embriotoxic effects and influence on the reproduction. Cyclohexanone is well absorbed through the skin, respiratory tract and alimentary tract. The main metabolic pathway leads to cyclohexanol, which is excreted in urine coupled with glucuronic acid. High correlation was found between the concentration of cyclohexanone in the working environment and its concentration in urine. The proposed value of MAC for cyclohexanone is based on the remote toxic effects, mainly the influence on the reproduction. In female rats, exposed by inhalation at 2600 mg/m3, in the period 9.- 16. day of pregnancy, a reduction of body weight was found in female as well as in fetuses. The concentration obtained in this experiment was accepted as LOAEL. The value of MAC based on the above effect amounts to 40 mg/m , and the value of MAC-STEL was set at 80 mg/m3. It is proposed that the compound will be marked with the letter S. Also the value of BEI is proposed (5.0 mg of cyclohexanol per gram of urinary creatinine).
PL
Cykloheksanol jest bezbarwną, higroskopijną substancją o zapachu podobnym do zapachu kamfory. Jest otrzymywany w reakcji utlenienia cykloheksanu lub katalitycznego uwodornienia fenolu. Używa się go jako półproduktu w przemyśle organicznym. 95% jego produkcji wykorzystuje się do otrzymywania kwasu adypinowego. Dane na temat toksyczności cykloheksanolu u ludzi są fragmentaryczne. Zatrucia ostre charakteryzują się podrażnieniem skóry, oczu i układu oddechowego. W przypadku długotrwałego, inhalacyjnego narażenia u robotników fabryki kaprolaktamu stwierdzono niespecyficzne zaburzenia ze strony autonomicznego układu nerwowego. Doustne jednorazowe podanie królikom dużych dawek cykloheksanolu powodowało martwicę narządów wewnętrznych. Pary cykloheksanolu powodowały podrażnienie oczu. Wielokrotne podanie na skórę może spowodować uszkodzenia: rumień i martwicę. Po podaniu cykloheksanolu w wodzie do picia obserwowano zmiany w OUN. Cykloheksanol powoduje podrażnienie górnych dróg oddechowych. Narażenie królików na duże stężenia (4000 - 5000 mg/m3) może być przyczyną zgonu zwierząt lub powstawania zmian zwyrodnieniowych w mózgu, sercu, wątrobie i nerkach. Natomiast przy stężeniu wynoszącym około 600 mg/m3 stwierdzono już tylko zmiany w wątrobie i nerkach. Po podskórnym podawaniu cykloheksanolu w dawce 15 mg/kg/dzień zanotowano znamienne zmniejszenie masy jąder, najądrzy, pęcherzyków nasiennych i gruczołu krokowego, zahamowanie spermatogenezy. Podobne zaburzenia obserwowano po doustnym podawaniu cykloheksanolu królikom w dawce 25 mg/kg/dzień (przez 40 dni). Dawkę 15 mg/kg/dzień przyjęto za wartość NOAEL. Cykloheksanol podawany w diecie ciężarnym i nie ciężarnym samicom myszy powodował zwiększenie śmiertelności potomstwa lub zahamowanie jego wzrostu. Podstawą proponowanej wartości NDS dla cykloheksanolu jest jego działanie toksyczne na układ rozrodczy samców zwierząt doświadczalnych (efekt krytyczny). W niniejszym opracowaniu zaproponowano wartość NDS cykloheksanolu równą 10 mg/m3 oraz oznakowanie związku symbolem Sk (cykloheksanol wchłania się przez skórę).
EN
Cyclohexanol is a colourless hygroscopic substance with an odour resembling camphor. It is obtained through oxidation of cyclohexane or catalytic hydrogenation of phenol. It is used as an intermediate product in organic industry: 95% of its production is used for the synthesis of adipic acid. Information on the toxicity of cyclohexanol in humans is fragmentary. Acute intoxications are characterized by irritation of the skin, eyes and respiratory tract. In workers of a caprolactam producing factory exposed by inhalation for a long period nonspecific disorders were found from the autonomic nervous system. In rabbits, single intragastric application of high doses of cyclohexanol resulted in necrosis of the internal organs. Vapours of cyclohexanol caused irritation of the eyes. Multiple application on the skin may result in erythema and necrosis. Following administration in drinking water changes were noted in the central nervous system. Cyclohexanol causes irritation of the upper respiratory tract. Exposure of rabbits to high air concentrations (4000-5000 mg/m3) may result in death of animals or degenerative changes in the brain, heart, liver and kidneys. At a concentration of 600 mg/mJ changes were only found in the liver and kidney. Following subcutaneous administration of cyclohexanol in a dose of 15 mg/kg/day significant reduction was noted in the mass of testicles, epididymis, seminal vesicles, prostate, as well as inhibition of spermatogenesis. Similar disorders were noted in rabbits following intragastric administration of cyclohexanol in a dose of 25 mg/kg/day for 40 days. The dose of 15 mg/kg/day was accepted as NOAEL. When given in the diet to pregnant and non-pregnant female mice cyclohexanol caused increased lethality of the offspring or inhibition of growth. The proposed maximum admissible concentration (MAC-TWA) for cyclohexanol is based on the toxic effects on male reproduction system in experimental animals (critical effect). In the present document the proposed value of MAC-TWA for cyclohexanol was set at 10 mg/m3; also, the symbol “S” was proposed (cyclohexanol is absorbed through the skin).
PL
l-Metoksypropan-2-ol (PGME) jest bezbarwną cieczą o zapachu podobnym do eteru etylowego. Jest stosowany jako rozpuszczalnik, dodatek do olejów silnikowych, czynnik chłodzący w płynach do chłodnic samochodowych oraz repelent przeciw stawonogom, ślimakom i płazom. Na podstawie wyników badań przeprowadzonych na ochotnikach, wykazano działanie drażniące PGME na błony śluzowe. Jest to związek nieklasyfikowany pod względem toksyczności ostrej (wartość DL50 po podaniu do żołądka szczurów wynosi 6100 mg/kg, a wartość CL50 dla szczura - 56250 mg/m3). U zwierząt narażanych inhalacyjnie na duże stężenia PGME obserwowano depresję ośrodkowego układu nerwowego.PGME nie wywiera działania mutagennego, genotoksycznego ani też nie powoduje zaburzeń rozrodu u zwierząt. Związek wchłania się dobrze w drogach oddechowych, ulega szybko metabolizmowi i wydaleniu z powietrzem wydychanym jako CO2 (50 H- 60% dawki) oraz z moczem (10 -f- 20%) jako glikol propylenowy i produkty sprzęgania w postaci siarczanów i glukuronianów. Nie prowadzono badań dotyczących rakotwórczości PGME. Najwyższe dopuszczalne stężenie (NDS) PGME w wielu państwach ustalono na poziomie 360 - 375 mg/m3 (100 ppm), a jedynie w państwach Unii Europejskiej na poziomie 188 mg/W (50 ppm). W niektórych państwach określono wartość NDSCh na poziomie od 1,5 raza do 3 razy większym od wartości NDS. Proponuje się ustalenie wartości NDS l-metoksypropanu-2-olu w Polsce na poziomie 180 mg/m3, a wartości NDSCh na poziomie 360 mg/m3, na podstawie wyników badań na ochotnikach.
EN
1-Methoxy-2-propanol (PGME) is a colourless liquid with a ether-like odour. PGME is used as solvent for inks, coatings, an antiicing component in fuels, as a radiator coolent in trucks and as a repellent for arthropods, mollusks and reptiles. The oral LD50 value for rat is 6100 mg/kg b.w. and the inhalation LC50 value for rat is 56250 mg/m3. The compound is of low toxicity, but at high concentrations effects on the CNS are observed as well as irregular 10xybreathing and slight growth depression. PGME is not mutagenic, genotoxic and teratogenic agent. PGME is absorbed from the respiratory tract and is extensively metabolized and exreted as CO2 in the expired air (50 - 60% of dose) and in the urine as propylene glycol and ipeanas sulphate and glucuronide conjugates (10 - 20% of total dose). The proposed maximum exposure limit (MAC) - 180 mg/m3 and the MAC-STEL-360 mg/m are based on the irritative effects observed in experiments with volunteers.
PL
Rezorcynol (rezorcyna, 1,3-dwuhydroksybenzen) jest powszechnie stosowanym substratem w syntezie organicznej (leki, kleje i inne) i w produkcji żywic syntetycznych formaldehydowo-rezorcynolowych. Stanowi składniki farb do włosów, płynów do układania włosów' oraz leków zewnętrznych o działaniu keratolitycznym i grzybobójczym (pigmentum Castellani). Rezorcyna jest związkiem szkodliwym wg kryteriów przyjętych w państwach Wspólnoty Europejskiej. W świetle zebranych informacji o działaniu toksycznym rezorcyny na zwierzęta doświadczalne oraz na ludzi, należy rozważyć - podczas ustalania wartości najwyższego dopuszczalnego stężenia rezorcyny na stanowiskach pracy - przede wszystkim następstwa narażenia ostrego, przejawiające się działaniem drażniącym na błony śluzowe, a także skutki jej działania neurotoksycznego. Wyniki badania przewlekłego narażenia zwierząt doświadczalnych na rezorcynę podaną do żołądka w zakresie dawek powyżej 50 mg/kg nie wykazały bowiem zwiększenia częstości występowania jakichkolwiek zmian nie- kancerogennych i nowotworowych. Ograniczone wyniki badań ludzi narażonych na rezorcynę o stężeniu do około 43 mg/m3 przez 10 – 20 i więcej lat nie wykazały również zwiększenia częstości występowania jakichkolwiek zmian chorobowych, które można byłoby wiązać z narażeniem na rezorcynę (Flickinger, 1976). Porównanie, uzyskanej w badaniu na najbardziej wrażliwym gatunku (samice szczurów), wartości NOAEL równej 27,5 mg/kg z wielkością dawki pobranej w ciągu 8-godzinnej zmiany roboczej przez pracownika narażo¬nego na rezorcynę o stężeniu 43 mg/m3 wskazuje, że dawka ta jest ponad czterokrotnie mniejsza. Można więc założyć, że w tych warunkach narażenia (45 mg/m3 jako wartość średnia dla 8-godzinnej zmiany roboczej) u pracowników nie wystąpią szkodliwe skutki zdrowotne związane z działaniem drażniącym rezorcyny na błony śluzowe, z działaniem neurotoksycznym w warunkach narażenia ostrego, a także skutki ogólnotoksyczne w następstwie narażenia przewlekłego. Ustalenie wartości NDSCh rezorcyny na poziomie 90 mg/m3 winno stanowić dodatkowe zabezpieczenie zdrowia pracowników przed ewentualnym, szkodliwym działaniem rezorcyny. Przedstawione wnioskowanie wydaje się być dodatkowo uzasadnione, jeśli uwzględnić fakt, że rezorcyna odznacza się słabszą siłą działania niż fenol, dla którego obowiązujące w Polsce wartości NDS i NDSCh ustalono odpowiednio na poziomie 10 i 20 mg/m3 Nie ma danych, które mogłyby być podstawą do ustalenia wartości najwyższego dopuszczalnego stężenia w materiale biologicznym.
EN
Resorcinol -1,3 dihydroxybenzene - is a commonly used substrate in organic synthesis (drugs, adhesives and others), in the production of resorcinol - formaldehyde synthethic re-sins, it is an ingredient of hair dyes, hair styling lotions and pharmaceutical preparations for topical treatment of keratolytic and fungicidal action (pigmentum Castellani). Resorcinol is a toxic compound (acc. to Criteria established by European Community countries). In the light of the collected information on resorcinol toxicity to experimental animals and humans, when the highest permissible resorcinol concentration is established, first of all the consequences of acute exposure (irritating action on mucosa) as well as the effect of neurotoxic action should be taken into consideration. The findings of the studies on long-term exposure of experimental animals to resorcinol administered to stomach in the doses range over 50 mg/kg did not show any increase in the frequency of incidences of noncarcinogenic and neoplastic lesions. Limited results of studies [Flickinger]. Comparison of the obtained in the experiment on the most sensitive species (female rats) NOAEL value equal to 27,5 mg/kg with the resorcinol dose in the concentration of 43 mg/m3 a worker is exposed to during 8h shift, showed that this dose is over four times lower. Thus, it may be assumed that in these exposure conditions (to simplify) - 45 mg/m3 as mean value for 8h shift - in the exposed workers, harmful effects related to irritating aetion of resorcinol to mucose will not be observed nor those connected with neurotoxic action in the conditions of acute exposure or those generally toxic effects as a consequence of long term exposure. Establishing resorcinol NDSCh values for 90 mg/m3 should be an additional protection of the worker's health against possible harmful action of resorcinol. The above presented conclusions seem to be additionally justified if the fact that resorcinol has weaker action than phenol, is taken into consideration. In Poland, NDS and NDSCh for phenol have been established as 10 and 20 mg/m , respectively. There is lack of data which could be the base for establishing the highest permissible concentration in biological material.
PL
Octan pentan-3-ylu jest bezbarwną cieczą o charakterystycznym bananowym zapachu. Jest głównie stosowany jako rozpuszczalnik nitrocelulozowy, celuloidu, żywic, tłuszczów i wosków. Ze względu na skąpe dane toksykologiczne zaproponowano przyjęcie wartości NDS dla octanu pentan-3-ylu przez analogię do octanu n-pentylu i octanu izopentylu, tj. na poziomie 250 mg/m³. Propozycja ta jest uzasadniona tym, że związki te są izomerami i należą do grupy estrów alifatycznych kwasu octowego, których skutki działania drażniącego nasilają się wraz ze wzrostem masy cząsteczkowej estrów. Ponieważ octan izopentylu i octan pentan-3-ylu nie różnią się masą cząsteczkową i mają zbliżone właściwości fizykochemiczne można przyjąć, że skutki ich działania drażniącego na błony śluzowe górnych dróg oddechowych i oczy są podobne. Zaproponowana dla tych związków wartość NDS na poziomie 250 mg/m³ nie różni się od wartości przyjętej w Unii Europejskiej, która wynosi 270 mg/m³ (Dyrektywa Rady, 1991). Wartość NDSCh proponuje się ustalić na poziomie 500 mg/m³ (dwa razy wartość NDS), ze względu na działanie drażniące związku. Ustalone wartości normatywów higienicznych powinny chronić przed działaniem drażniącym substancji na błony śluzowe górnych dróg oddechowych i oczy.
EN
3-Pentyl acetate is an isomer of pentyl acetate. 3-Pentyl acetate is a colourless, flammable liquid with a banana or pearlike odour. 3-Pentyl acetate is employed as a solvent and is used in perfumes and flavourings. Banana oil (pear oil), a commercial mixture of amyl acetate isomers, has found wide use as a solvent in laxquers and other products containing cellulose esters. In literature, data concerning acute toxicity and chronic effects of 3-pentyl acetate in human and experimental animals are not availabe. The liquid and vapour phases of 3-pentyl acetate are irritating to the eyes, skin and mucous membranes. Because of the irritant effect of 3-pentyl acetate, and its comparison with isoamyl acetate, the MAC of 250 mg/m3 and the value of STEL 500 mg/m3 are recommended.
PL
Octan 2-butoksyetylu jest bezbarwną cieczą o zapachu owocowym i niskiej prężności par. Stosowany jest jako rozpuszczalnik nitrocelulozy, octanu celulozy i niektórych żywic syntetycznych, a także środek czyszczący, dodatek do paliw lotniczych oraz mydeł płynnych i kosmetyków. Narażenie na ten związek w przemyśle, wyrażone stężeniem jego par w powietrzu, jest na ogół małe. W Polsce związek ten występuje jako składnik rozpuszczalnika do wyrobów akrylowych o nazwie Dekrydil M. W piśmiennictwie brak jest danych dotyczących działania toksycznego octanu 2-butoksyetylu na ludzi. U zwierząt laboratoryjnych ostra i przewlekła toksyczność tego związku manifestuje się działaniem hemolitycznym i nefrotoksycznym. Siła działania ostrego jest stosunkowo niewielka. Związek ten wykazuje słabe działanie drażniące na skórę i błony śluzowe. Natomiast brak jest danych odnośnie do działania uczulającego, mutagennego, rakotwórczego oraz wpływu tego związku na rozwój ontogenetyczny człowieka i zwierząt. Octan 2-butoksyetylu z łatwością wchłania się przez skórę. W organizmie ulega hydrolizie, a następnie utlenia się do odpowiedniego aldehydu i kwasu 2-butoksyoctowego, który prawdopodobnie jest sprzęgany z glicyną i wydalany przez nerki. W piśmiennictwie nie znaleziono dopuszczalnych poziomów narażenia zawodowego dla tego związku. Na podstawie wartości LOAEL u zwierząt i dwóch współczynników bezpieczeństwa obliczono i zaproponowano wartość NDS na poziomie 100 mg/m3. Nie znaleziono podstaw do określenia wartości NDSCh i DSB.
EN
2- Butoxyethyl acetate (BEA) (CAS Registry No. 112-07-2) is a colourless liquid with fruity odour and low vapour pressure. BEA is used as an organic solvent, in dry cleaning and as addition in aircraft fuel, fluid soap and cosmetics. In the available literature no data have been found on the toxicity of BEA in humans. The acute and chronic toxicity of this compound in rats and rabbits was manifested by hemolytic anemia and kidney impairment. Based on LOAEL value obtained from animal experiments and appropriate uncertainty factors the MAC value was calculated at 100 mg/m3. No STEL value has been established for BEA.
PL
Czysty karbofuran występuje w postaci bezbarwnych kryształków. Ma zastosowanie w rolnictwie jako insektycyd i nematocyd. Opisane działanie toksyczne karbofuranu u ludzi dotyczy przede wszystkim przypadkowych zatruć, zwykle o ostrym lub podostrym przebiegu. Zatrucia przypadkowe były najczęściej wynikiem nieostrożnego obchodzenia się z preparatami zawierającymi karbofuran. Cięższe, nieleczone przypadki kończyły się zwykle śmiercią. U osób mających kontakt z preparatami zawierającymi karbofuran stwierdzano występowanie reakcji uczuleniowych przejawiających się występowaniem dermatoz. Nie stwierdzano żadnych szkodliwych skutków u osób narażanych na działanie karbofuranu o stężeniu 0,1 mg/m3 w powietrzu. Toksyczność ostra karbofuranu zależy głównie od drogi narażenia. Na podstawie wyników badań na zwierzętach wykazano, że LD50 karbofuranu po podaniu dożołądkowym waha się od kilku do kilkunastu miligramów na kilogram masy ciała i wynosi po narażeniu przez skórę ok. 3000 mg/kg masy ciała. Karbofuran nie wykazuje działania drażniącego na skórę. U zwierząt doświadczalnych związek ten nie powodował reakcji uczuleniowych. W badaniach toksyczności podostrej przy narażeniu inhalacyjnym na działanie związku o stężeniu 0,14 mg/m3 przez 5 dni w tygodniu po 4 h dziennie w ciągu 3 tygodni nie spowodował żadnych dających się zaobserwować skutków. Nie stwierdzono działania teratogennego ani też wpływu na rozrodczość w badaniach na trzech pokoleniach szczurów. Nie wykazano też działania mutagennego w warunkach in vitro i in vivo. W badaniach toksyczności przewlekłej przy narażaniu szczurów i myszy drogą pokarmową wyznaczono wartość NOEL dla tego związku: równą 1,0 mg/kg masy ciała dziennie dla szczurów i dla myszy równą 2,5 mg/kg masy ciała dziennie. W badaniach neurotoksyczności na kurach nie stwierdzono występowania skutku opóźnionej neurotoksyczności. Karbofuran łatwo wchłania się z przewodu pokarmowego, a następnie podlega metabolizmowi z wytworzeniem 3-hydroksykarbofuranu i 3-ketokarbofuranu, oba metabolity znacznie słabiej hamują aktywność cholinoesterazy niż substancja macierzysta. Równolegle następuje stosunkowa szybka hydroliza wiązania karbaminianowego. Większość metabolitów jest wydalana z moczem w postaci siarczanów lub jako koniugaty z kwasem glukuro- nowymMechanizm toksycznego działania karbofuranu wynika z hamowania przez ten związek esterazy acetylocholinowej (AChE), co w konsekwencji prowadzi do pobudzenia układu przywspółczulnego. Śmierć następuje wskutek porażenia układu oddechowego. Połączenie karbofuranu z AChE, w przeciwieństwie do związków fosforoorganicznych, ma charakter nietrwały. Wartość najwyższego dopuszczalnego stężenia karbofuranu na stanowiskach pracy zaproponowano na poziomie 0,1 mg/m3. Normatyw ten zaproponowano na podstawie wyników badań na małpach, u których jednorazowe 6- godzinne narażenie na ok. 5-krotnie większe stężenie w powietrzu nie spowodowało żadnych skutków toksycznego działania. Wykorzystano również wyniki badań, w których stężenie 0,1 mg/m3 nie spowodowało żadnych skutków u narażanych pracowników. Nie znaleziono podstaw do zaproponowania wartości DSB dla karbofuranu.
EN
Carbofuran is a systemic carbamate insecticide acting as an acetylcholinesterase inhibitor. The major use of this compound is in agriculture. Reported poisonings in man resulted mainly from accidental misuses of pesticidal products containing this compound. There is no data concerning dermal and lung absorption but carbofuran is easily absorbed from the gastrointe-stinal tract. Two major metabolites of carbofuran have also anti AChE properties. HD50 for carbofuran following oral exposure range from 6 to about 18 mg/kg body weight. NOAEL in two-year feeding studies is 20 mg/kg diet. No carcinogenic, mutagenic, teratogenic effects have been reported in the relevant toxicologi- cal studies. Carbofuran did not impair reproduction in the tested animals. Basing on the results obtained after single exposure of monkeys to carbofuran in concentration of 0,5 mg/m3 for 6 hours, which caused no effect, a concentration 0,1 mg of carbofuran/m3 is proposed as a maximum exposure limit (maximum allowable concentration).
PL
Chloroform (CHCl3) jest lotnym bezbarwnym płynem o charakterystycznym duszącosłodkim zapachu. 98% wyprodukowanego CHCl3 wykorzystuje się do syntezy dichlorofluorometanu − substancji chłodzącej stosowanej we wszystkich typach urządzeń chłodniczych. Stosowany jest także jako rozpuszczalnik oraz odczynnik chemiczny w różnego rodzaju procesach technologicznych oraz w laboratoriach analitycznych. W przeszłości był stosowany jako środek anestetyczny przy zabiegach chirurgicznych. Pracownicy narażeni w miejscu pracy na działanie CHCl3 o stężeniu 114 ÷ 382 mg/m³ skarżyli się na skrajne zmęczenie, kłopoty z koncentracją, a ponadto na dolegliwości ze strony układu pokarmowego (wzdęcia, zgaga, mdłości). Przy narażeniu na związek o stężeniu powyżej 924 mg/m³ opisano wzrost przypadków powiększenia wątroby u badanych pacjentów. W grupie pracowników narażanych na 400 ppm (1985 mg/m³) opisywano częstsze przypadki toksycznego zapalenia wątroby niż w porównywalnej populacji osób nie narażanych. Na podstawie wyników badań epidemiologicznych wykazano, że iloraz szans urodzenia dziecka z hypotrofią wewnątrzmaciczną jest proporcjonalny do stężenia chloroformu w wodzie pitnej. Na podstawie wyników badań toksyczności ostrej na zwierzętach wykazano, że narządem docelowym jest wątroba. U myszy obserwowano zależne od dawki zmiany martwicze w wątrobie. W narażeniach przewlekłych na działanie związku o stężeniach większych niż 10 mg/m³ przez 6 miesięcy powodowało zmiany histopatologiczne w wątrobie i nerkach myszy, szczurów, świnek morskich oraz królików. U myszy B6C3F1 narażanych na chloroform o stężeniach 5 ÷ 1500 mg/m³ przez 90 dni obserwowano zależny od dawki wzrost uszkodzeń hepatocytów wątroby oraz wzrost liczby uszkodzeń małżowiny sitowej nosa szczurów F344 narażanych na związek o stężeniach 5 ÷ 1500 mg/m³ CHCl3. Skutki działania chloroformu na potomstwo myszy i szczurów obserwowano po narażeniu ciężarnych samic odpowiednio na chloroform o stężeniu 500 mg/m³ oraz 1500 mg/m³. CHCl3 działa toksycznie na wątrobę i nerki wielu gatunków zwierząt. Mechanizm jego działania toksycznego zależny jest od produktów metabolizmu, głównie fosgenu. Chloroform jest wchłaniany przez skórę, stosunek szybkości przenikania przez skórę do krytycznej szybkości przenikania przez skórę F1/Fl wynosi 0,03. Na podstawie publikowanych w latach 1994-1996 wyników badań toksyczności inhalacyjnej CHCl3 u szczurów narażanych przez 90 dni, można przyjąć, że wartość NOAEL wynosi 50 mg/m³, natomiast wartość LOAEL 150 mg/m.
EN
Chloroform (CHCI3) is a colourless liquid with high vapor pressure, characteristic odour and a slightly sweet taste. CHCI3 is used in the chemical industry for synthesis of fluorocar- bons and it is still used as an industrial solvent. It has been used as an anesthetic, but that use has been discontinued because it is hepatotoxic and nephrotoxic, and may cause cardiac ar- rythmias leading to death. Workers exposed to chloroform at concentrations of 114 4- 382 mg/m3 complained of lassitude, mental dullness and digestive disturbances. Hepatomegaly was observed in workers exposed to concentrations of about 900 mg/m . Chloroform is absorbed from the respiratory tract and through intact skin. The reactive intermediates of chloroform metabolism, mainly phosgene, are responsible for cellular damage within the liver and other organs. The liver can be recognised as an critical organ in laboratory animals. Inhalation exposure of rats, guinea pigs, mice and rabbits at concentrations higher than 10 mg/m3 caused histopatological changes in the liver and kidneys. In inhalatory experiments (90 days, 5 -f 1500 mg/m3) time and dose dependent necrosis of liver and regenerative liver cell proliferation was observed in mice. On the basis of these data NOAEL and LOAEL values of 50 and 150 mg/m3 respectively were proposed. MAC value of 8 mg/m3 and skin notation (Sk) are recommended.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.