Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  tofu wastewater
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This research aims to design recommendations for improving the tofu production process in Sugihmanik Village. Over 30 tofu small medium enterprises (SMEs) generate solid and liquid waste, which pollutes the river. An eco-efficiency strategy was implemented and began by identifying the tofu production process. The life cycle assessment (LCA) method and the SimaPro software were used to calculate eco-cost and eco-efficiency levels. Based on the calculations, the eco-cost value per batch is USD 10.76. If 30 batches are produced daily, the eco-cost value in one of the tofu SMEs is USD 9.10. Tofu production has an eco-efficiency index (EEI) value of 0.12. This value shows that tofu products are only affordable but have yet to be sustainable. The researchers then recommend using biogas from wastewater treatment to replace rice husks and corncobs. This study also develops a circular economy framework in the tofu production system. The output is expected to suppress the discharge of water and solid waste to increase the EEI value of the tofu production process in the future.
EN
Tofu wastewater is a liquid by-product of the tofu production process that typically contains high levels of organic matter, such as proteins, carbohydrates, and fats, as well as other compounds, such as nitrogen, phosphorus, potassium, and COD. Tofu wastewater COD levels can vary depending on the type of soybeans used in the production process and the stages of the production process. This study aimed to analyze the characteristics of tofu wastewater from various types of soybeans and the characteristics of wastewater at each stage of the production process. The research methods used were field research and laboratory tests. Field research was conducted by collecting samples from different types of soybeans and analyzing them in the laboratory. Meanwhile, laboratory tests were run by analyzing samples for various parameters such as Soybeans Protein, Chemical Oxygen Demand (COD), total suspended solids (TSS), Biochemical Oxygen Demand (BOD), ammonia, and fat oil. The results showed that Wonogiri Soybeans had the highest protein parameter, 19%. As far as the wastewater of seed samples, the Wonogiri Seed sample had the highest parameter results for TSS, COD, ammonia, and BOD, which are 444 mg/L, 4583.33 mg/L; 13.86 mg/L; and 3.481 mg/L, respectively. As for the fat oil parameter, the Red Seed sample achieved the highest result of 6264 mg/L. In the case of the samples from each washing stage, it is known that the washing sample parameter results are lower than the seed samples. The Red 1st Washing sample had the highest TSS, COD, fat oil, and BOD values, amounting to 316 mg/L, 4666.67 mg/L, 356 mg/L, and 2053.71 mg/L, respectively. In comparison, the highest fat oil parameter corresponded to the Wonogiri 1st Washing sample with a value of 11.78 mg/L. The B/C ratio of all samples is > 0.1 and is in the biodegradable zone. Thus, the samples are not only able to be treated through biological processes, but also able to be treated through physical and chemical processes to avoid the length of time for biological decomposition due to the acclimatization process of microorganisms to the samples.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.