Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 19

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  tlenki żelaza
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Tlenek żelaza(III), (Fe2O3, nr CAS 1309-37-1) w warunkach naturalnych występuje jako ruda żelaza. Najpowszechniejsza z nich (hematyt) zawiera około 70% czystego żelaza. Tlenek żelaza(III) jest stosowany jako czerwony barwnik w przemyśle: ceramicznym, szklarskim, papie7rniczym oraz jako surowiec ścierny w obróbce metali (skrawanie). Tlenek żelaza(II), (FeO, CAS 1345-25-1) występuje rzadko jako minerał – wustyt. Jest stosowany jako czarny barwnik w kosmetyce oraz do otrzymywania tuszu do tatuażu. Tetratlenek triżelaza (Fe3O4, CAS 1309-38-2; 1317- -61-9) należy do minerałów pospolitych (magnetyt). Wykazuje silne właściwości magnetyczne. Tetratlenek triżelaza występuje w skałach magmowych (gabro, bazalt). W Polsce minerał ten występuje na Dolnym Śląsku: w Kowarach, w Kletnie, okolicach Szklarskiej Poręby, jest również spotykany w bazaltach okolic Złotoryi i na Suwalszczyźnie. Tetratlenek triżelaza jest najbogatszą i najlepszą dla przemysłu rudą żelaza. Narażenie zawodowe na tlenki żelaza występuje w górnictwie oraz hutnictwie przy produkcji: żelaza, stali i wyrobów metalowych. Na tlenki żelaza są narażeni pracownicy zatrudnieni przy mieleniu rud i polerowaniu srebra oraz: spawacze, ślusarze i tokarze. Według Państwowej Inspekcji Sanitarnej w 2013 r. w narażeniu na tlenki żelaza o stężeniach przekraczających obowiązującą wartość NDS (5 mg/m3) pracowało w Polsce 389 osób, a w 2014 r. – 172 osoby. Po jednorazowym, dożołądkowym podaniu szczurom tlenku żelaza(III) wartość LD50 ustalono na ponad 10 000 mg/kg mc., natomiast po podaniu dootrzewnowym – 5500 mg/kg mc. Analiza wyników badań wykonanych na zwierzętach laboratoryjnych wykazała, że zarówno po jednorazowym, jak i wielokrotnym dotchawiczym i inhalacyjnym narażeniu na tlenek żelaza(III) notowano najczęściej przejściowe nasilenie stresu oksydacyjnego i występowanie reakcji zapalnych. Tlenek żelaza(III) nie powodował działania genotoksycznego i rakotwórczego. W dostępnej literaturze nie ma informacji o jego wpływie na: płodność, rozrodczość oraz przebieg ciąży. Dane dotyczące toksyczności przewlekłej tlenków żelaza dla ludzi narażonych w środowisku pracy są nieliczne i dotyczą głównie narażenia pracowników na tlenek żelaza(III). W przypadku badań epidemiologicznych, wszystkie przedstawione w dokumentacji informacje pochodzą z obserwacji ludzi narażonych na łączne działanie tlenków żelaza i innych czynników. Nie podano, czy narażenie zawodowe było związane z konkretnym tlenkiem żelaza, oraz na jakie stężenia pracownicy byli narażeni. Najczęściej spotykanym skutkiem toksycznym w narażeniu zawodowym: górników i hutników rudy żelaza oraz spawaczy, były niewielkie zmiany zwłóknieniowe w płucach oraz pylica żelazowo-krzemowa (widoczne w badaniu RTG). Siderozę (żelazicę, pylicę żelazową) uważa się od lat za chorobę zawodową górników i hutników rud żelaza. Ponadto u: górników, hutników i spawaczy, zanotowano przypadki raka płuc, jednak były one spowodowane łącznym narażeniem na inne związki, m.in.: radioaktywny radon, rakotwórczy chrom, mangan, nikiel, inne tlenki (SiO2, ZnO, CO, NO, NO2, MgO) oraz spaliny z silników diesla. Według IARC tlenek żelaza(III) należy do grupy 3. (nie może być klasyfikowany pod względem działania rakotwórczego na ludzi). Pyły tlenku żelaza(III) mogą się gromadzić w tkance łącznej płuc, co może być przyczyną występowania obszarów zwłóknienia, szczególnie w wyższych partiach zewnętrznych części płatów płucnych. Skutki te były widoczne tylko w badaniu rentgenowskim (RTG). Pylica płuc spowodowana narażeniem na tlenki żelaza przebiegała zwykle bezobjawowo (brak objawów klinicznych i zmian w parametrach funkcji płuc). Podstawą do wyznaczenia propozycji wartości NDS dla frakcji wdychalnej tlenków żelaza było stężenie 10 mg Fe/m3, które u ludzi narażonych zawodowo na tlenek żelaza(III) ponad 10 lat nie powodowało zmian w płucach (wartość NOAEL). Po zastosowaniu współczynnika niepewności (równego 2) związanego z wrażliwością osobniczą otrzymano wartość NDS – 5 mg/m3 (w przeliczeniu na Fe). Taką samą wartość NDS dla frakcji wdychalnej tlenku żelaza(III), (5 mg/m3) otrzymano z badań na chomikach syryjskich narażonych inhalacyjnie na pyły tlenku żęlaza(III) o stężeniu 40 mg/m3 przez całe życie (wartość LOAEL). Podstawą wartości NDS dla frakcji respirabilnej tlenków żelaza były 10-letnie obserwacje ludzi narażonych na tlenek żelaza(III) przy jego produkcji. U 12% pracowników narażonych na frakcję respirabilną o średnich stężeniach 10 ÷ 15 mg/m3 obserwowano zmiany w badaniu RTG płuc. Wartość 10 mg/m3 przyjęto za wartość LOAEL. Po zastosowaniu odpowiednich współczynników niepewności, wartość NDS dla frakcji respirabilnej tlenków żelaza zaproponowano na poziomie 2,5 mg/m3. Autorzy dokumentacji zaproponowali pozostawienie obowiązującej wartości NDSCh dla tlenków żelaza na poziomie 10 mg/m3 dla frakcji wdychanej oraz wprowadzenie wartości NDSCh – 5 mg/m3 dla frakcji respirabilnej. Normatywy oznakowano literą „I”, ze względu na jego działanie drażniące.
EN
Iron (III) oxide, (Fe2O3, nr CAS 1309-37-1) in natural conditions occurs as iron ore. The most common (hematite) contains about 70% pure iron. Iron (III) oxide is used as a red dye in ceramics, glass and paper industries and as a raw material for abrasive metalworking (cutting). Iron (II) oxide, (FeO, CAS 1345-25-1) occurs as a mineral wurtzite and is used as a black dye in cosmetics and as a component of tattoo ink. Iron (II) iron (III) oxide (Fe3O4, CAS 1309-38-2; 1317- -61-9) is a common mineral. It has strong magnetic properties (so called magnetite). It occurs in igneous rocks (gabbro, basalt). It is the richest and the best iron ore for industry. Occupational exposure to iron oxides occurs in the mining and metallurgical industry in the production of iron, steel and its products. Welders, locksmiths, lathes and workers employed in milling ores and polishing silver are exposed to iron oxides. According to data from the State Sanitary Inspection, in 2013, 389 people in Poland were exposed to iron oxide in concentrations exceeding the current NDS (5 mg/m3 ) and in 2014 – 172 people. After single and multiple intratracheal and inhalation exposure of animals, transient intensification of oxidative stress and inflammatory reactions were reported. Iron (III) oxide did not cause genotoxic and carcinogenic effects. In literature, there are no data on its effects on fertility, reproduction and pregnancy. Data on chronic toxicity of iron oxides for humans exposed in working environment are limited. In epidemiological studies, all information presented in the documentation comes from observations of people exposed to the combined effects of iron oxides and other factors. It is not stated whether occupational exposure was related to the specific iron oxide and to what concentrations workers were exposed. The most commonly encountered toxic effect in the occupational exposure of iron ore miners and iron welders and welders was minor lung fibrosis lesions and iron-silicon dust (as seen in the RTG study). Siderose is the occupational disease of miners and iron ore metallurgists. Moreover, cases of lung cancer have been reported in miners, steel workers and welders, but they were caused by total exposure to other compounds, including radioactive radon, carcinogenic chromium, manganese, nickel, other oxides (SiO2, ZnO, CO, NO, NO2, MgO) as well as exhaust gases from diesel engines. According to IARC, iron (III) oxide belongs to group 3 (cannot be classified as carcinogenic to humans). Iron (III) oxides can accumulate in a lung tissue, this process may be responsible for the occurrence of fibrosis sites, particularly in higher parts of external lung parts. These effects were visible in the X-ray examination only. Pneumoconiosis (siderosis) caused by exposure to iron oxides is usually asymptomatic (lack of clinical symptoms and changes in lung function parameters). The basis for the proposed MAC-TWA value for inhalable iron oxide fraction was NOAEL of 10 mg Fe/m3 . People exposed for more than 10 years to iron (III) oxide had no pulmonary changes. After application of an uncertainty factor of 2 (for differences in personal sensitivity in humans), the MAC-TWA value for the iron oxide fraction was proposed at 5 mg/m3 (calculated as Fe). The same observations on humans were the basis for calculating the MAC-TWA value for respirable fraction of iron (III) oxide. On 12% of workers exposed to respirable fraction at mean concentrations of 10 ÷ 15 mg/m3 , changes in pulmonary X-ray were observed. The value of 10 mg/m3 was assumed as LOAEL. After applying the appropriate uncertainty coefficients, the MAC-TWA value for the iron oxide respirable fraction was proposed at 2.5 mg/m3 . The authors propose to leave the short-term value (STEL) of 10 mg/m3 for inhaled fraction for iron oxides and to introduce STEL value of 5 mg/m3 for respirable fraction. It is recommended to label the substances with "I" - irritant substance.
EN
Iron-modified pumice (Fe-P) was prepared by the ion-exchange method using natural pumice from Kayseri, Turkey at room temperature without calcination. SEM, FTIR, XRD, and S-BET measurement were used to investigate the copper removal mechanism. The results show that the SBET of the pumice increased from 11.88 m2/g to 21.01 m2/g after iron modification. The effects of pH, contact time, initial copper concentration, temperature, and various cations (Na+, K+, Ca2+, Mg2+ and Al3+) at various pH were investigated in batch experiments. More than 92% of Cu(II) was removed after 180 min. Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherm models were applied to the equilibrium data at 298, 308 and 318 K. The maximum adsorption capacity at 298, 308 and 318 K was found to be 21.52, 19.48, and 19.67 mg/g, respectively. The kinetics of copper on Fe-P was best described by the pseudo-second order kinetic model. The negative values of free energy change and enthalpy change indicated that the adsorption process was feasible, spontaneous and exothermic.
EN
Purpose: This study focuses on increasing production of biogas as an alternative energy from biodegradable wastes (BWs) using BSA coated iron oxides nanoparticles, in view of solving waste management at household level. Many attempts have been performed in order to increase biogas production, including thermal pre-treatment of organic waste, but all of them present limited industrial applications. Iron has been shown to enhance anaerobic digestion, but there are severe drawbacks for introducing the metal ion in an anaerobic closed reactor. Design/methodology/approach: Process for the production of biogas from biodegradable material which comprises the steps of: (a) adding the biodegradable material to the Bio- reactor,(b) inoculating the microorganisms in the digester,(c) synthesis iron oxides and BSA powder coated on the particles (d) adding a colloidal solution of surface-modified BSA-iron oxide nanoparticles to the reactor; (e) providing anaerobic conditions; (f) carrying out the anaerobic digestion; and (g) collecting the biogas, wherein the steps (a), (b) and (c) can be carried out in any order. It also comprises the use of BSA-iron oxide nanoparticles capable of supplying Fe ions to the media for biogas production in anaerobic conditions and in the presence of Fe ions in the media.
PL
W artykule opisano wyniki badań eksperymentalnych zjawiska przejścia manganu do żelaza metalicznego w procesie redukcji izotermicznej tlenków żelaza z faz ciekłych w temperaturze 1400°C. Badania prowadzono z wykorzystaniem przemysłowego koncentratu magnetytowego (lebiedieński) i koksiku wielkopiecowego. Wyniki badań wykazały, że istnieje duże zróżnicowanie stężenia tego metalu w żelazie (w zakresie od 0,20 do 2,10% mas.), co wskazuje na dyfuzyjny mechanizm przenoszenia manganu w żelazie w stanie stałym.
EN
This paper describes the results of experimental research work on phenomena of transition of manganese into metallic iron in the process of isothermal reduction of iron oxides from liquid phase at 1400°C. The study was conducted with the use of industrial magnetite concentrate (lebiedieński) and blast furnace coke breeze. The results showed that there is a large variation in the concentration of the manganese in iron, ranging from 0.20 to 2.10 mass %, suggesting diffusion transfer mechanism of manganese in the iron in the solid state.
5
Content available W pogoni za sadzą
EN
Soot is produced simultaneously by the incomplete combustion of fossil fuels. Investigations of soot elemination methods are currently focused on light fuel oil boilers. The overview of various transition metal properties points at iron as the most promising cation. The technology of existing oil burners excludes modifications necessary to install additional catalytic conversters. The most feasible way to eliminate soot is to introduce the catalyst in the form of fuel additive. Iron iron oxides and/or hydroxides are suggested as base for production of fuel-borne-catalyst.
EN
A hybrid polymer containing hydrated iron oxide was obtained in aone-step redox process. Macroporous S/DVB copolymer containing N-chlorosulfonamide groups in Na+ form ([P]–SO2NClNa) was used as amacromolecular oxidant for Fe(II) ions which in the form of iron oxide were deposited within a polymer matrix. The final product ([P]–SO2NH2#5Fe2O3·9H2O) contained 12 % Fe(III) in the form of ferrihydrite which presence was confirmed by FT-IR and Mössbauer spectroscopic studies. The deposition of iron oxide caused reduction in BET surface and porosity of the host material.
PL
Polimery hybrydowe typu polimer/tlenki żelaza stanowią grupę materiałów o doskonałych właściwościach adsorpcyjnych. W pracy przedstawiono syntezę tego typu polimeru hybrydowego opartą na reakcji utleniania jonów Fe(II) za pomocą makroporowatego, redoksowego kopolimeru S/DVB z N-chlorosulfonamidowymi grupami funkcyjnymi w postaci soli sodowej ([P]–SO2NClNa). Otrzymany materiał ([P]–SO2NH2#5Fe2O3·9H2O) zawierał 12 % Fe(III) w postaci ferrihydrytu. Z przeprowadzonej analizy zdjęć SEM produktu wynika, że depozyt żelazowy był zdyspergowany w matrycy polimeru równomiernie, ajego wprowadzenie nie spowodowało degradacji struktury polimeru (rys. 1a i 1b). Wykazano jednocześnie, że w odniesieniu do wartości odpowiadającej polimerowi wyjściowemu, zmniejszeniu uległa powierzchnia BET (tabela 1). W widmach IR stwierdzono obecność pasm charakterystycznych dla struktury ferrihydrytu (rys. 2). Obecność ferrihydrytu potwierdziły również widma Mössbauera (rys. 3). Otrzymany polimer hybrydowy wykazywał cechy paramagnetyczne oraz amorficzne.
EN
In this work a hybrid material containing iron oxide was used as an effective sorbent for removal of Cr(VI) from water solutions. The hybrid sorbent was obtained by new method using redox S/DVB copolymer containing N-chlorosulfonamide functional groups in reduction/oxidation reaction with Fe(II) ions. The obtained product contained sulfonamide functional groups which are not charged in wide pH range (till pH = 11.0), what differs our product from other polymeric hybrid sorbents with iron oxide reported in the literature and obtained on the basis of ion exchangers. The sorption kinetic data were well described by pseudo-second order model indicating the chemisorption of chromate onto iron oxide surface. These data also correlated well with intraparticle diffusion model, what showed that diffusion within the polymer structure was the rate determining step of the chromate sorption process. The equilibrium studies showed that removal of Cr(VI) was pH dependent and was favored under acidic conditions (pH = 2.5—5.0). After adsorption process chromates were effectively desorbed from the adsorbent surface by NaOH solution.
PL
W pracy przedstawiono wyniki badań sorpcji jonów Cr(VI) przy użyciu zsyntezowanego polimeru hybrydowego zawierającego tlenki żelaza. Hybrydowy sorbent otrzymano w wyniku reakcji utleniania jonów Fe(II) z wykorzystaniem makroporowatego, redoksowego polimeru S/DVB z N-chlorosulfonamidowymi grupami funkcyjnymi w formie Na+. Uzyskany produkt zawiera sulfonamidowe grupy funkcyjne charakteryzujące się wysokim pKa = 11, dzięki czemu nie wykazuje on właściwości jonowymiennych, a jedynie sorpcyjne (w odróżnieniu od opisanych w literaturze polimerów hybrydowych otrzymywanych z wykorzystaniem wymieniaczy jonowych). Badano sorpcję z roztworów Cr(VI), o stężeniach od 5 do 100 mg Cr(VI)/dm3 i o różnym pH, od 2,5 do 11,0 a także w obecności innych jonów: Cl- (500 mg/dm3) i SO42- (1000 mg/dm3). Badania kinetyczne wykazały, że sorpcja chromianów przebiega zgodnie z modelem chemicznym (pseudo-second order model) (rys. 1), co dowodzi chemisorpcji chromianów na powierzchni tlenków żelaza. Z kolei, dobre dopasowanie danych eksperymentalnych do modelu dyfuzyjnego (intraparticle diffusion model) wskazuje, że czynnikiem determinującym szybkość procesu jest dyfuzja chromianów w głąb struktury ziarna polimeru (rys. 2). Wykazano również, że sorpcja chromianów jest zależna od pH roztworu i przebiega najbardziej efektywnie w środowisku kwasowym (pH = 2,5—5,0) (rys. 3). Przemywanie zużytego złoża hybrydowego polimeru roztworem 0,1 M NaOH, pozwoliło na zdesorbowanie 93 % jonów Cr(VI).
EN
Sodium and ammonium jarosite precipitates from the sulfuric acid leaching of deep-sea nodules were converted into well crystallized hematite by alkali decomposition of jarosite using sodium hydroxide or ammonia solutions at different temperature and subsequent sintering at 400 and 750°C. The obtained sodium and ammonium jarosite precipitates were intergrown aggregates composed of half-prism and tabular-like crystals with sharp corners and edges. It was found that base-strength of alkali solutions effected the kinetics of conversion reactions and morphology of solid phase. The residual solids retained the shape and the particle size of the original jarosite precipitates. The main feature of the residual from sodium jarosite is a severe surface pitting and an erosion of edges and corners. The decomposition of ammonium jarosite precipitates at different temperatures took place very fast and completed within 15 minutes at 25°C. Increasing temperature increased the decomposition rate. At 60°C jarosite decomposition was completed in less than 2 minutes. But the experimental results indicated that the sulfate anions slowly diffused from the jarosite structure after the completion of the decomposition reaction. The main impurities in jarosite precipitates such as Mn, Cu and Ni reported into the final product but hematite obtained from decomposition of ammonium jarosite contained significantly less Cu due to formation of copper ammonia complex. The XRD analysis results indicated that the decomposition products at temperatures lower than 90°C are amorphous. At 90°C the decomposition products consisted of poorly crystallized hematite. After sintering the decomposition products from both sodium and ammonium jarosites at 400°C and 750°C, well-crystallized hematite was obtained.
PL
Sodowy i amonowy jarosyt wytrąca się podczas ługowania kwasem solnym guzków głębinowych i zostaje przetworzony w wyraźnie skrystal-izowany hematyt za pomocą dekompozycji alkalicznej jarosytu, która zachodzi przy użyciu wodorotlenku sodu lub roztworów amonowych w różnych temperaturach oraz następujących potem procesów spiekania w 400 i 750°C. Uzyskane wytrącenia sodowego i amonowego jarosytu utworzyły następnie skupienia złożone z pół-pryzmatycznych i tabularycznych kryształów o ostrych końcach i krawędziach. Stwierdzono, że siła roztworów alkalicznych wpływa na kinetykę reakcji konwersji oraz morfologię fazy stałej. Pozostałe części stałe utrzymały kształt i wielkość ziaren oryginalnego wytrącenia jarosytu. Główną cechą reszt z sodowego jarosytu są wżery powierzchniowe oraz erozja krawędzi i końców. Dekompozycja wytrąceń jarosytu amonowego zachodzi bardzo szybko w innej temperaturze. Zajmuje to nie więcej jak 15 minut w temperaturze 25°C. Wzrost temperatury powoduje wzrost stopnia dekompozycji. W temperaturze 60°C dekompozycja jarosytu została ukończona w czasie mniejszym niż 2 minuty. Jednakże, wyniki eksperymentu wskazały, że aniony siarczanowe ulegają powolnej dyfuzji ze struktury jarosytu po ukończeniu reakcji rozkładu. Głównymi zanieczyszczeniami w wytrąceniach jarosytu są takie pierwiastki jak Mn, Cu oraz Ni, których obecność stwierdzono w finalnym produkcie. Jednak hematyt otrzymany w wyniku dekompozycji jarosytu amonowego zawierał znacznie mniej Cu ze względu na utworzenie kompleksu amonowego miedzi. Wyniki analizy XRD wykazały, że produkty rozkładu w temperaturze niższej niż 90°C są amorficzne. W temperaturze 90°C produkty rozkładu zawierały słabo skrystalizowany hematyt. Po spiekaniu produktów rozkładu z zarówno sodowego, jak i amonowego jarosytu w temperaturach 400°C oraz 750°C otrzymano dobrze skrystalizowany hematyt.
EN
The aim of the study was to determine the efficiency of decomposition of azo dye C.I. Direct Yellow 86 by the Fenton method in the presence of nanoparticles of iron oxides and to compare it with the classical Fenton method. Water solutions of the dye were subjected to the classical purification method with the application of ferrous sulfate and – for comparison – to a process in which iron (II,III) oxide nanopowder was added to the ferrous sulfate. Analysis of the effect of the ferrous sulfate, iron (II,III) oxide nanopowder, hydrogen peroxide and the pH of the solution on the treatment efficiency showed that the process was optimised. The use of iron oxide nanopowder increased the efficiency of dye decomposition.
PL
Celem badań było określenie efektywności rozkładu barwnika azowego C.I. Direct Yellow 86 metodą Fentona przy udziale nanocząstek tlenków żelaza i porównanie jej z efktywnością klasycznej metody Fentona. Roztwory wodne barwnika oczyszczano metodą klasyczną stosując siarczan żelazawy oraz metodą zmodyfikowaną stosując siarczan żelazawy z dodatkiem nanocząstek tlenków żelaza (II,III). Dokonano optymalizacji procesu oczyszczania badając wpływ dawek siarczanu żelazawego i nanocząstek tlenków żelaza (II,III), dawki nadtlenku wodoru oraz pH roztworu na efektywność obróbki. Zastosowanie dodatku nanocząstek tlenków żelaza w zmodyfikowanym procesie klasycznym przebiegającym z udziałem siarczanu żelazawego zwiększało wydajność rozkładu barwnika.
10
PL
Metoda polega na pobraniu tlenków żelaza na filtr membranowy w celu osadzenia na nim związków zawartych w powietrzu, następnie mineralizacji filtra stężonym kwasem azotowym i oznaczeniu żelaza w roztworze przygotowanym do analizy metodą absorpcyjnej spektrometrii atomowej w płomieniu powietrze-acetylen. Opracowana metoda oznaczania tlenku żelaza stanowi podstawę projektu normy PN. Oznaczalność metody wynosi 0,35 mg/m3. Opracowaną metodę oznaczania tlenku żelaza zapisaną w postaci procedury analitycznej zamieszczono w Załączniku.
EN
This method is based on collecting iron oxides on a membrane filter, mineralizing the sample with concentrated nitric acid and preparing the solution for analysis in diluted nitric acid. Iron oxides in the solution are determined as iron with flame atomic absorption spectrometry. The detection limit for iron oxides in this method is 0.35 mg/m3. The developed method of determining iron oxides has been recorded as an analytical procedure, which is available in the Appendix.
PL
W artykule opisano wyniki badań eksperymentalnych zjawiska przejścia krzemu i manganu w procesie redukcji izotermicznej tlenków żelaza z faz ciekłych w temperaturze 1400°C. Badania prowadzono z wykorzystaniem przemysłowego koncentratu magnetytowego (lebiedieński) i koksiku wielkopiecowego. Wyniki badań wykazały, że istnieje duże zróżnicowanie stężenia tego metalu w żelazie (w zakresie od 0,10 do 4,80% mas.), co wskazuje na dyfuzyjny mechanizm przenoszenia krzemu w żelazie w stanie stałym. Jednocześnie, wyniki badań wskazują, że przenoszenie krzemu z ciekłej fazy żużlowej do metalu jest procesem bardziej złożonym.
EN
This paper describes the results of experimental research work on phenomena of transition of silicon in the process of isothermal reduction of iron oxides from liquid phase at 1400°C. The study was conducted with the use of industrial magnetite concentrate (lebiedieński) and blast furnace coke breeze. The results showed that there is a large variation in the concentration of the metallic iron, ranging from 0.10 to 4.80 wt.%, suggesting diffusion transfer mechanism of silicon in the iron in the solid state. At the same time, the results indicate that the transfer of silicon from the liquid phase to the metal appears as a more complex phenomenon.
PL
W artykule przedstawiono wyniki badań eksperymentalnych nawęglania żelaza w procesie redukcji izotermicznej tlenków żelaza z faz ciekłych w temperaturze 1400 °C. W badaniach stosowano przemysłowy koncentrat magnetytowy (lebiedieński) i koksik wielkopiecowy. Wyniki badań wykazały, że zawartość węgla w zredukowanym żelazie wykazuje ten sam średni poziom 0,37% mas. niezależnie od czasu trwania eksperymentu (tj. 10 minut lub 10+30 minut). Obliczenia szybkości dyfuzji węgla do żelaza w stanie stałym wykazały dobrą zgodność z danymi eksperymentalnymi.
EN
In the paper the results of experimental investigations on carburization of solid iron formed during reduction process from liquid phases at temperature 1400 °C are described. In research work an industry magnetite concentrate (lebiedensla) and blast furnace coke breeze were used. The results revealed that content of carbon in reduced iron is the same (0.3 7 wt%), irrespectively of time of experiments (i.e. 10 min or 10+30 min). Calculations of carbon concentration in solid iron have shown a good agreement with the experimental data.
13
Content available Dyspersja tlenków żelaza - aktualny stan wiedzy
PL
W niniejszym artykule została pokrótce opisana historia zastosowania tlenków żelaza - od malowideł ściennych w jaskiniach po katalizowanie syntez organicznych - oraz obecny stan wiedzy na ich temat. W dalszej części omówiono sposoby wykorzystania tlenków żelaza i najważniejsze kierunki rozwoju technologii z ich wykorzystaniem. Nanododatki do paliw czy materiały magnetyczne o szerokim spektrum zastosowań w przemyśle elektronicznym . to tylko wybrane sposoby wykorzystania tlenków żelaza, opisane w tym artykule.
EN
This paper shows a brief history of iron oxides and former and present methods of using them: from decorating walls of caves to catalyzing organic synthesis. It also contains a glance at future of development technology uses iron oxides. The nanoadditives in petroleum industry and a material with special magnetic properties in electronic or medical application are several of many methods described in this study.
EN
(FeCoZr)x(Al2O3)100-x composites have been obtained with ion-beam sputtering in atmosphere Ar and O. Mössbauer spectroscopy, inductive magnetometry and conductivity measurements were carried out for investigation of nanocomposites structure and properties. Performed investigation revealed the opportunity to influence by hydrogenation on FeCoZr-Al2O3 structure and magnetic properties.
PL
Kompozyty (FeCoZr)x(Al2O3)100-x były uzyskane przez rozpylanie jonowe w atmosferze Ar i O. Przeprowadzono pomiary konduktywności oraz badania struktury i właściwości nanokompozytów przy użyciu spektroskopii Mössbauerowskiej i magnetometrii indukcyjnej. Przeprowadzono badania wykazują pływ hydrogenizacji na strukturę i właściwości magnetyczne FeCoZr-Al2O3.
PL
W artykule przedstawiono wyniki badań strukturalnych nanocząsteczek tlenków żelaza. Związki tego rodzaju znajdują zastosowanie jako dodatki uszlachetniające do lekkich olejów opałowych i napędowych, pełniąc rolę katalizatorów utleniania sadzy. Zbadano trzy próbki dodatków o charakterze nanosuspensji organicznych, z czego jedną z nich stanowił dodatek firmowy, a dwie pozostałe to produkty syntez prowadzonych w Zakładzie Dodatków Uszlachetniających INiG. Dyspergantami w próbkach były kwas oleinowy (próbki A i B) oraz stabilizator Koriten 100 (próbka C). Za pomocą techniki Dynamicznego Rozpraszania Światła (DLS) przeprowadzono pomiary hydrodynamicznej wielkości cząstek dla suspensji organicznych rozpuszczonych w heptanie. Wykonano również analizę strukturalną suchych produktów z użyciem Transmisyjnej Mikroskopii Elektronowej (TEM). Rozmiar i kształt cząstek został określony w oparciu o zdjęcia "w jasnym polu" oraz mikroskopii wysokorozdzielczej HREM (High Resolution Electron Microscopy). Udowodniono krystaliczny charakter badanej fazy stałej. Wykonano również obrazy dyfrakcji elektronowej. Parametry komórki elementarnej dla wszystkich trzech próbek wykazały obecność fazy Fe2O3. Na podstawie otrzymanych wyników badań określono strukturę i rozmiar rdzenia koloidów oraz wymiary podwójnej warstwy elektrycznej.
EN
This article presents results of structural research into iron oxide nanoparticles. Various application of those type of compounds is known, though study is dedicated to fuel additives supporting soot oxidation process (as well in heating and as in Diesel oil). Three nanosuspensions were investigated: one was a commercial product dispersed in oleic acid and other two were prepared in Fuel Additive Laboratory of Oil and Gas Institute using an oleic acid and stabilizer Koriten100 as dispersants. Size and size distribution of liquid samples dissolved in heptane were determined by dynamic light scattering spectroscopy (DLS) and further compared to results of conducted transmission electron microscopy (TEM) studies of dried specimens. Both size and shape of particles were determined by TEM images' analysis. To define general character of powders conventional bright-field imaging was used whereas to obtain single particle size values High Resolution TEM was applied. BF experiment has shown that all three powders were crystals. In order to define unit cell parameters Electron Diffraction imaging was conducted. Analysis of reciprocal lattice has shown that all three investigated specimens were Fe2O3 phase. Based on this studies, shape of powders and size of solid core of colloids were determined. Simple calculation using hydrodynamic size values has led to define thickness of the electrical double layer.
EN
The paper presents preliminary data concerning sizes, distribution and composition of the most popular particles, which are formed during coal combustion, i.e. iron oxide particles. It is written only about particles of iron oxides, not describing different phases which contain iron (such as sulphides, carbonates or native iron). Particles of PM10 (Particule Matter 10) and the fallen dust were collected in several towns of the Upper Silesia. Fly ash samples from the coal combustion were separated in electrofilters. All samples were gathered during the last years. Samples were analysed by X-ray diffraction on Philips PW 3710 instrument (with CoKa radiation) and Philips XL30 TMP scanning electron microscope equipped with EDAX system and EDS type Sapphire. In fly ashes, similar iron oxide particles were found. However, differences in concentration of accessory components were observed. The magnesioferrite, hercynite and chromite occurred in the fly ashes. Differences were also observed in grain size of the dominating particles. About 50–60 wt. % of iron oxides particles present in the atmospheric dust have diameters less then 10 mm, while about 10 wt. % of them show particles less then 2.5 mm (respirable particles). The fly ashes from the electrofilters contained a lot of iron oxide particles with the diameter range 30–80 mm (average about 70 wt. % of all iron oxides particles). Most of larger iron oxide particles originating from the coal combustion are separated in the electrofilters, but the smallest fractions (less then 10 mm) are emitted to the atmosphere. Since a lot of iron oxides particles, which diameters is less than 10 mm are observed in the air it may be assumed that these diameters are transported to long distances. Moreover, iron oxide particles which diameters are less then 2.5 mm can show a potential hazard to human health. There are preliminary studies of iron oxides, which will be continued.
PL
Niniejszy artykuł przedstawia wstępne wyniki badań dotyczące rozmiarów, rozmieszczenia i składu najczęściej występujących cząsteczek o składzie tlenków żelaza, które powstały podczas procesów spalania węgla kamiennego. Opis dotyczy tylko wyżej wymienionych, cząstek natomiast pominięto inne fazy zawierające żelazo (takie jak siarczany, węglany czy też żelazo metaliczne). Cząsteczki PM 10 (pył zawieszony) oraz pył opadowy pobrane były w kilku wybranych miastach Górnego Śląska. Próbki popiołu pobrano z elektrofiltrów zakładów spalających węgiel kamienny. Wszystkie próbki zebrano w ciągu kilku ostatnich lat. Materiał badawczy poddano analizie rentgenowskiej metodą proszkową, wykorzystując dyfraktometr Philips PW 3710, używając lampy kobaltowej CoKa oraz badaniom w skaningowej mikroskopii elektronowej przy użyciu środowiskowego mikroskopu Philips XL30 TMP wyposażonego w EDS typu Sapphire. Dominujące cząsteczki tlenków żelaza (magnetyt, hematyt, wustyt) obserwowano w pyłach atmosferycznych i popiołach z elektrofiltrów. Różnice obserwowano w ilości i składzie cząstek akcesorycznych. W popiołach częściej występowały: magnezioferryt, harcynit i chromit. Różnice obserwowano też w rozmiarach dominujących cząstek. Tlenki żelaza w pyłach atmosferycznych o średnicach poniżej 10 mm stanowiły ok. 50–60% obj., podczas gdy cząstki o średnicach respirabilnych (poniżej 2,5 mm) to ok. 10% obj. Popioły z elektrofiltrów zawierają cząstki tlenków żelaza o średnicach rzędu 30–80 mm (co stanowi ok. 70% obj. wszystkich cząstek o składzie tlenków żelaza). Większość dużych cząstek tlenków żelaza powstających w procesach spalania węgla kamiennego osadza się na elektrofiltrach, jednak najmniejsze frakcje (poniżej 10 mm) są emitowane z gazami spalinowymi do atmosfery. Stąd w powietrzu odnotowuje się znaczne ilości tlenków żelaza o średnicach mniejszych niż 10 mm, co powoduje, iż rozmiary tych cząstek sprzyjają dalekiemu transportowi od źródła ich powstawania. Natomiast cząstki zawierające tlenki żelaza o średnicach respirabilnych mogą niekorzystnie działać na zdrowie. Badania te powinny być kontynuowane celem szczegółowego określenia wpływu tlenków żelaza na środowisko i organizmy żywe.
PL
Tematem pracy było opracowanie technologii wypełniania rowków na powierzchni bocznej pierścieni tłokowych silników spalinowych. Jako wypełnienie zastosowano mieszaninę tlenku żelaza Fe3O4 oraz lepiszcza. Lepiszczem jest metakrzemian sodu (Na2SiO3) w postaci sypkiej lub jako składnik szkła wodnego. Określenie dokładnego składu ilościowego mieszaniny przeprowadzono na drodze doświadczalnej. Opracowano trzy technologie wypełniania rowków pierścieni tłokowych. Najlepsze wyniki uzyskano stosując technologię mokrą ze szkłem wodnym. Przedstawiono także technologię wykonania uszczelniających pierścieni tłokowych z rowkami wypełnionymi masą opartą o tlenki żelaza. W pracy zostały również przedstawione badania makro i mikroskopowe opracowanych pierścieni tłokowych.
EN
The object of this study was to develop the groove filling technology on lateral surface of piston rings of combustion engines. A mixture of iron oxides and a binder was used as a filler. The binder is sodium silicate (Na2SiO3) in loose form or as an ingredient of water-glass. The accurate mixture ratio was determined by way of experiment. Three groove filling technologies were developed. The best results were obtained by using the wet technology with water-glass. The technology of sealing piston rings with groove filled with iron oxides mass was presented. The macro- and microscopic testing of elaborated piston rings was showed.
18
Content available remote Przyczyny korozji wysokotemperaturowej na odlewach żeliwnych
PL
W odlewach z żeliwa szarego z poziomą lub cylindryczną powierzchnią, w miejscach położonych najwyżej w formie, stwierdzono występowanie korozji wysokotemperaturowej. Badania metalograficzne wykazały, że pod warstwą skorodowaną korozja występuje na granicach ziaren i postępuje w głąb od powierzchni odlewu. Zalewanie form piaskowych z bentonitem wysoko przegrzanym żeliwem starym może stanowić przyczynę występowania korozji wysoko temperaturowej na powierzchni odlewów. Woda krystaliczna i strukturalna zawarta w bentonicie oraz wysoka skala przegrzania metalu powodują atmosferę silnie utleniającą. Zwiększona przy tym ilość wodoru, który rozpuszcza się w metalu i we wtrąceniach niemetalicznych przyspiesza procesy korozyjne. Przy obniżaniu temperatury wodór wydziela się powodując mikropęknięcia, które zwiększają powierzchnie utleniane.
EN
In the iron castings with the horizontal or cylindrical surface, in the highest places, the high- temperature corrosion of surface has been confirmed. Metallographic examinations have been carried out and it has been found that in the structure of boundary layer in the scale zone appeared corrosion at the borders of grains. Sand mould with bentonite which was poured with high superheating cast grey iron can cause high temperature corrossion on castings surfaces. The crystal water and structural water contented in bentonite and also high temperature of pouring metal can create intensive oxidizing atmosphere. Hydrogen pressurization, which dissolve in metal and in non metallic inclusions can accelerate corrossion process. During the temperature reducing educed hydrogen can cause micro-cracks which increase the surface of high temperature oxidation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.