Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  tissue characterization
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Quantitative ultrasound has been widely used for tissue characterization. In this paper we propose a new approach for tissue compression assessment. The proposed method employs the relation between the tissue scatterers’ local spatial distribution and the resulting frequency power spectrum of the backscattered ultrasonic signal. We show that due to spatial distribution of the scatterers, the power spectrum exhibits characteristic variations. These variations can be extracted using the empirical mode decomposition and analyzed. Validation of our approach is performed by simulations and in-vitro experiments using a tissue sample under compression. The scatterers in the compressed tissue sample approach each other and consequently, the power spectrum of the backscattered signal is modified. We present how to assess this phenomenon with our method. The proposed in this paper approach is general and may provide useful information on tissue scattering properties.
EN
The aim of the study is to investigate the potential of multi-sequence texture analysis in the characterization of prostatic tissues from in vivo Magnetic Resonance Images (MRI). The approach consists in simultaneous analysis of several images, each acquired under different conditions, but representing the same part of the organ. First, the texture of each image is characterized independently of the others. Then the feature values corresponding to different acquisition conditions are combined in one vector, characterizing a combination of textures derived from several sequences. Three MRI sequences are considered: T1-weighted, T2-weighted, and diffusion-weighted. Their textures are characterized using six methods (statistical and model-based). In total, 30 tissue descriptors are calculated for each sequence. The feature space is reduced using a modified Monte Carlo feature selection, combined with wrapper methods, and Principal Components Analysis. Six classifiers were used in the work. Multi-sequence texture analysis led to better classification results than single-sequence analysis. The subsets of features selected with the Monte Carlo method guaranteed the highest classification accuracies.
EN
We describe a new method to separate ballistic from the scattered photons for optical tissue characterization. It is based on the hypothesis that the scattered photons acquire a phase delay. The photons passing through the sample without scattering or absorption preserve their coherence so they may participate in interference. We implement a Mach-Zehnder experimental setup where the ballistic photons pass through the sample with the delay caused uniquely by the sample indices of refraction. We incorporate a movable mirror on the piezoelectric actuator in the sample arm to detect the amplitude of the modulation term. We present the theory that predicts the path-integrated (or total) concentration of the scattering and absorption centres. The proposed technique may characterize samples with transmission attenuation of ballistic photons by a factor of 10-14.
4
Content available remote Texture characterization for hepatic tumor recognition in multiphase CT
EN
A new approach to texture characterization from dynamic CT scans of the liver is presented. Images with the same slice position and corresponding to three typical acquisition phases are analyzed simultaneously. Thereby texture evolution during the propagation of contrast product is taken into account. The method is applied to recognizing hepatie primary tumors. Experiments with various sets of texture parameters and two classification methods show that simultaneous analysis of texture parameters derived from three subsequent acquisition moments improves the classification accuracy.
5
Content available remote Advances in electrical impedance methods in medical diagnostics
EN
The electrical impedance diagnostic methods and instrumentation developed at the Gdansk and Warsaw Universities of Technology are described. On the basis of knowledge of their features, several original approaches to the broad field of electrical impedance applications are discussed. Analysis of electrical field distribution after external excitation, including electrode impedance, is of primary importance for measurement accuracy and determining the properties of the structures tested. Firstly, the problem of electrical tissue properties is discussed. Particular cells are specified for in vitro and in vivo measurements and for impedance spectrometry. Of especial importance are the findings concerning the electrical properties of breast cancer, muscle anisotropy and the properties of heart tissue and flowing blood. The applications are both important and wide-ranging but, for the present, special attention has been focused on the evaluation of cardiosurgical interventions. Secondly, methods of instrument construction are presented which use an electrical change in conductance, such as impedance pletysmography and cardiography, for the examination of total systemic blood flow. A new method for the study of right pulmonary artery bloodftow is also introduced. The basic applications cover examination of the mechanical activity of the heart and evaluation of many haemodynamic parameters related to this. Understanding the features that occur during blood flow is of major importance for the proper interpretation of measurement data. Thirdly, the development of electrical impedance tomography (ElT) is traced for the purposes of determining the internal structure of organs within the broad field of 2-D and 3-D analysis and including modelling of the organs being tested, the development of reconstruction algorithms and the construction of hardware.
7
Content available remote Impedance methods for tissue characterization
EN
The spectral characteristics of electroimpedance of chosen tissues were studied. The results of the experimental and medical study show that the complex impedance as a function of frequency differs for normal and abnormal tissue with chronic circulation disturbances (ischemia). The presented methods are useful and easy for experimental and medical application.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.