Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  time reversal
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Damped Zero-Pseudorandom Noise OFDM Systems
EN
This paper proposed a new OFDM scheme called damped zero-pseudorandom noise orthogonal frequency division multiplexing (DZPN-OFDM) scheme. In the proposed scheme, ZPN-OFDM non-zero part is damped to reduce its energy, thus the mutual interference power in-between the data and training blocks with conservative the pseudo-noise conventional properties required for channel estimation or synchronization. The motivation of this paper is the OFDM long guard interval working in wide dispersion channels, whereas a significant energy is wasted when the conventional ZPN-OFDM is used as well as the BER performance is also degraded. Moreover, the proposed scheme doesn’t duplicate the guard interval to solve the ZPN-OFDM spectrum efficiency loss problem. Both detailed performance analysis and simulation results show that the proposed DZPNOFDM scheme can, indeed, offer significant bit error rate, spectrum efficiency and energy efficiency improvement.
EN
This paper, an energy consumption model is developed and exploited to evaluate the electrical energy consumption of ultra-wideband impulse radio (UWB-IR) systems. We develop the energy consumption models and our comparative study, on the one hand, for a system based single-input singleoutput (SISO) configuration and a multiple-input single-output (MISO) and, on the other hand, for a time reversal TR-MISO configuration and for MISO alone configuration. We consider an indoor propagation environment based on the 802.15.4a channel model. The results show very different behaviors depending on the propagation conditions, the number of antennas used, or on the number of transmitted symbols. Using such a model, a radiofrequency designer can obtain significant inputs to optimally select an adequate configuration to design an adaptive energyaware UWB-IR system.
3
EN
The time reversal method has become a standard technique for the location of seismic sources. It has been used both for acoustic and elastic numerical modelling and for 2D and 3D propagation models. Although there are many studies concerning its application to point sources, little so far has been done to generalise the time reversal method to the study of sequences of seismic events. The need to describe such processes better motivates the analysis presented in this paper. The synthetic time reversal imaging experiments presented in this work were conducted for sources with the same origin time as well as for the sources with a slight delay in origin time. For efficient visualisation of the seismic wave propagation and interference, a new coefficient—peak average power ratio—was introduced. The paper also presents a comparison of visualisation based on the proposed coefficient against a commonly used visualisation based on a maximum value.
EN
We consider the analogue of Lévy area, defined as an iterated stochastic integral, obtained by replacing two independent component onedimensional Brownian motions by the mutually non-commuting momentum and position Brownian motions P and Q of either Fock or non-Fock quantum stochastic calculus, which are also stochastically independent in a certain sense. We show that the resulting quantum Lévy area is trivially distributed in the Fock case, but has a non-trivial distribution in non-Fock quantum stochastic calculus which, after rescaling, interpolates between the trivial distribution and that of classical Lévy area in the “infinite temperature” limit. We also show that it behaves differently from the classical Lévy area under a kind of time reversal, in both the Fock and non-Fock cases.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.