Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  tidal current
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In recent years, 'weather routing' has been attracting increasing attention as a means of reducing costs and environmental impact. In order to achieve high-quality weather routing, it is important to accurately predict the ship's speed through ground during a voyage from ship control variables and predicted data on weather and sea conditions. Because sea condition forecasts are difficult to produce in-house, external data is often used, but there is a problem that the accuracy of sea condition forecasts is not sufficient and it is impossible to improve the accuracy of the forecasts because the data is external. In this study, we propose a machine learning method for predicting speed through ground by considering the actual values of the previous voyage’s drift speed for ships that regularly operate on the same route, such as ferries. Experimental results showed that this method improves the prediction performance of ship’s speed through ground.
EN
The lagoon is a natural system protected from the sea by a dune barrier creating energy from the movement of rising and falling tides, thus providing a sustainable option for extracting energy from tidal currents. The energy that can be extracted is one of the most potential renewable energy sources. Therefore, the interaction of tidal currents with stratification layers has become important to optimize the efficiency of energy conversion at each depth layer in water masses. We have chosen as a case study, the Oualidia lagoon (Atlantic coast of Morocco). This ecosystem is characterized by hydrodynamics relatively favored by tides and tidal currents which are the main intra-lagoon currents, with a predominance of the semi-diurnal component M2 (period of 12 h 25) with 2.1 to 3.4 m of tidal range. The Multicell Argonaut-XR ADCP is used to measure the current velocity in the Oualidia lagoon at three different stations to study tidal patterns in a vertical layer of water depth. At each station, current velocities were recorded in each 0.5 m layer over a depth of about 5 m. As a result, this study showed that current velocity measurements to be used as renewable energy are found at station 1 located at a depth of 3.5 meters (~layer 5) with a current velocity of 0.771 m/s and a power density value of 235.344 W/m2, station 2 located at a depth of 3.5 meters (~layer 5) with a current velocity of 0.4 m/s and a power density value of 32.86 W/m2 and station 3 is located at a depth of 3 meters (~layer 6) with a current velocity of 0.527 m/s and a power density value of 75.157 W/m2. The variation in current velocities between the different stations is mainly influenced by tides (Flood/ebb), the period of the measurements and the location of the stations. This work presents a model for extracting electrical energy through the use of tidal and current flow variations in such semi-enclosed natural system including lagoons.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.